These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 15298916)

  • 1. Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.
    Kudryashov DS; Phillips M; Reisler E
    Biophys J; 2004 Aug; 87(2):1136-45. PubMed ID: 15298916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic Methods to Visualize Actin Filaments In Vitro Using Fluorescence Microscopy for Observation of Filament Severing and Bundling.
    Ono S
    Methods Mol Biol; 2016; 1365():187-93. PubMed ID: 26498785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malaria parasite actin polymerization and filament structure.
    Schmitz S; Schaap IA; Kleinjung J; Harder S; Grainger M; Calder L; Rosenthal PB; Holder AA; Veigel C
    J Biol Chem; 2010 Nov; 285(47):36577-85. PubMed ID: 20826799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of tetramethylrhodamine-labeled actin polymerization and interaction with actin regulatory proteins.
    Pelikan Conchaudron A; Didry D; Le KH; Larquet E; Boisset N; Pantaloni D; Carlier MF
    J Biol Chem; 2006 Aug; 281(33):24036-47. PubMed ID: 16757474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of gelsolin with tropomyosin modulates actin dynamics.
    Khaitlina S; Fitz H; Hinssen H
    FEBS J; 2013 Sep; 280(18):4600-11. PubMed ID: 23844991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments.
    De La Cruz EM; Pollard TD
    Biochemistry; 1994 Dec; 33(48):14387-92. PubMed ID: 7981198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severing of F-actin by yeast cofilin is pH-independent.
    Pavlov D; Muhlrad A; Cooper J; Wear M; Reisler E
    Cell Motil Cytoskeleton; 2006 Sep; 63(9):533-42. PubMed ID: 16847879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament.
    Genjo T; Sotoma S; Tanabe R; Igarashi R; Shirakawa M
    Anal Sci; 2016; 32(11):1165-1170. PubMed ID: 27829620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The real-time monitoring of the thermal unfolding of tetramethylrhodamine-labeled actin.
    Perieteanu AA; Sweeting B; Dawson JF
    Biochemistry; 2008 Sep; 47(36):9688-96. PubMed ID: 18702522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins.
    Isambert H; Venier P; Maggs AC; Fattoum A; Kassab R; Pantaloni D; Carlier MF
    J Biol Chem; 1995 May; 270(19):11437-44. PubMed ID: 7744781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution properties of tetramethylrhodamine-modified G-actin.
    Kudryashov DS; Reisler E
    Biophys J; 2003 Oct; 85(4):2466-75. PubMed ID: 14507709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeling F-actin barbed ends with rhodamine-actin in permeabilized neuronal growth cones.
    Marsick BM; Letourneau PC
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin-destabilizing factors disrupt filaments by means of a time reversal of polymerization.
    Orlova A; Shvetsov A; Galkin VE; Kudryashov DS; Rubenstein PA; Egelman EH; Reisler E
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17664-8. PubMed ID: 15591338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro motility assay to study translocation of actin by myosin.
    Sellers JR
    Curr Protoc Cell Biol; 2001 May; Chapter 13():Unit 13.2. PubMed ID: 18228321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments.
    Ujfalusi Z; Kovács M; Nagy NT; Barkó S; Hild G; Lukács A; Nyitrai M; Bugyi B
    J Biol Chem; 2012 Sep; 287(38):31894-904. PubMed ID: 22753415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational movement of formins evaluated by using single-molecule fluorescence polarization.
    Mizuno H; Watanabe N
    Methods Enzymol; 2014; 540():73-94. PubMed ID: 24630102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise sliding of single actin and Myosin filaments.
    Liu X; Pollack GH
    Biophys J; 2004 Jan; 86(1 Pt 1):353-8. PubMed ID: 14695277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attachment conditions control actin filament buckling and the production of forces.
    Berro J; Michelot A; Blanchoin L; Kovar DR; Martiel JL
    Biophys J; 2007 Apr; 92(7):2546-58. PubMed ID: 17208983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanics of the actin filament: the linear relationship between stiffness and yield strength allows estimation of the yield strength of thin filament in vivo.
    Grazi E; Cintio O; Trombetta G
    J Muscle Res Cell Motil; 2004; 25(1):103-5. PubMed ID: 15160494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging.
    Shimozawa T; Ishiwata S
    Biophys J; 2009 Feb; 96(3):1036-44. PubMed ID: 19186141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.