These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 15298918)
1. Porphyrin depth in lipid bilayers as determined by iodide and parallax fluorescence quenching methods and its effect on photosensitizing efficiency. Bronshtein I; Afri M; Weitman H; Frimer AA; Smith KM; Ehrenberg B Biophys J; 2004 Aug; 87(2):1155-64. PubMed ID: 15298918 [TBL] [Abstract][Full Text] [Related]
2. The localization and photosensitization of modified chlorin photosensitizers in artificial membranes. Dror SB; Bronshtein I; Garini Y; O'Neal WG; Jacobi PA; Ehrenberg B Photochem Photobiol Sci; 2009 Mar; 8(3):354-61. PubMed ID: 19255676 [TBL] [Abstract][Full Text] [Related]
3. The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency. Lavi A; Weitman H; Holmes RT; Smith KM; Ehrenberg B Biophys J; 2002 Apr; 82(4):2101-10. PubMed ID: 11916866 [TBL] [Abstract][Full Text] [Related]
4. The effect of pH on the topography of porphyrins in lipid membranes. Bronshtein I; Smith KM; Ehrenberg B Photochem Photobiol; 2005; 81(2):446-51. PubMed ID: 15581389 [TBL] [Abstract][Full Text] [Related]
5. Interaction of photosensitizers with liposomes containing unsaturated lipid. Voszka I; Budai M; Szabó Z; Maillard P; Csík G; Gróf P Chem Phys Lipids; 2007 Feb; 145(2):63-71. PubMed ID: 17118350 [TBL] [Abstract][Full Text] [Related]
6. Hydrophobicity, topography in membranes and photosensitization of silicon phthalocyanines with axial ligands of varying lengths. Sholto A; Ehrenberg B Photochem Photobiol Sci; 2008 Mar; 7(3):344-51. PubMed ID: 18389152 [TBL] [Abstract][Full Text] [Related]
7. Impact of lipid composition and photosensitizer hydrophobicity on the efficiency of light-triggered liposomal release. Massiot J; Makky A; Di Meo F; Chapron D; Trouillas P; Rosilio V Phys Chem Chem Phys; 2017 May; 19(18):11460-11473. PubMed ID: 28425533 [TBL] [Abstract][Full Text] [Related]
8. Dithiaporphyrin derivatives as photosensitizers in membranes and cells. Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897 [TBL] [Abstract][Full Text] [Related]
9. Photo-triggerable liposomes based on lipid-porphyrin conjugate and cholesterol combination: Formulation and mechanistic study on monolayers and bilayers. Massiot J; Abuillan W; Konovalov O; Makky A Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183812. PubMed ID: 34743950 [TBL] [Abstract][Full Text] [Related]
10. Adsorption and photodynamic efficiency of meso-tetrakis(p-sulfonatophenyl)porphyrin on the surface of bilayer lipid membranes. Konstantinova AN; Sokolov VS; Jiménez-Munguía I; Finogenova OA; Ermakov YA; Gorbunova YG J Photochem Photobiol B; 2018 Dec; 189():74-80. PubMed ID: 30316028 [TBL] [Abstract][Full Text] [Related]
11. Photophysical properties and localization of chlorins substituted with methoxy groups, hydroxyl groups and alkyl chains in liposome-like cellular membrane. Al-Omari S Biomed Mater; 2007 Jun; 2(2):107-15. PubMed ID: 18458443 [TBL] [Abstract][Full Text] [Related]
12. Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer. Riske KA; Sudbrack TP; Archilha NL; Uchoa AF; Schroder AP; Marques CM; Baptista MS; Itri R Biophys J; 2009 Sep; 97(5):1362-70. PubMed ID: 19720024 [TBL] [Abstract][Full Text] [Related]
13. Self-organized lipid-porphyrin bilayer membranes in vesicular form: nanostructure, photophysical properties, and dioxygen coordination. Komatsu T; Moritake M; Nakagawa A; Tsuchida E Chemistry; 2002 Dec; 8(23):5469-80. PubMed ID: 12561319 [TBL] [Abstract][Full Text] [Related]
15. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location. Rokitskaya TI; Firsov AM; Kotova EA; Antonenko YN Biochemistry (Mosc); 2015 Jun; 80(6):745-51. PubMed ID: 26531019 [TBL] [Abstract][Full Text] [Related]
16. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Marin DM; Payerpaj S; Collier GS; Ortiz AL; Singh G; Jones M; Walter MG Phys Chem Chem Phys; 2015 Nov; 17(43):29090-6. PubMed ID: 26460933 [TBL] [Abstract][Full Text] [Related]
17. Photodynamic efficiency of cationic meso-porphyrins at lipid bilayers: insights from molecular dynamics simulations. Cordeiro RM; Miotto R; Baptista MS J Phys Chem B; 2012 Dec; 116(50):14618-27. PubMed ID: 23163841 [TBL] [Abstract][Full Text] [Related]
18. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
19. Singlet oxygen generation by porphyrins and the kinetics of 9,10-dimethylanthracene photosensitization in liposomes. Gross E; Ehrenberg B; Johnson FM Photochem Photobiol; 1993 May; 57(5):808-13. PubMed ID: 8337252 [TBL] [Abstract][Full Text] [Related]
20. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Kaiser RD; London E Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]