These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 15298919)
1. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Psencík J; Ikonen TP; Laurinmäki P; Merckel MC; Butcher SJ; Serimaa RE; Tuma R Biophys J; 2004 Aug; 87(2):1165-72. PubMed ID: 15298919 [TBL] [Abstract][Full Text] [Related]
2. Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Psencík J; Arellano JB; Ikonen TP; Borrego CM; Laurinmäki PA; Butcher SJ; Serimaa RE; Tuma R Biophys J; 2006 Aug; 91(4):1433-40. PubMed ID: 16731553 [TBL] [Abstract][Full Text] [Related]
3. X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Ikonen TP; Li H; Psencík J; Laurinmäki PA; Butcher SJ; Frigaard NU; Serimaa RE; Bryant DA; Tuma R Biophys J; 2007 Jul; 93(2):620-8. PubMed ID: 17468163 [TBL] [Abstract][Full Text] [Related]
4. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. Saga Y; Tamiaki H J Biosci Bioeng; 2006 Aug; 102(2):118-23. PubMed ID: 17027873 [TBL] [Abstract][Full Text] [Related]
5. Isotopic replacement of pigments and a lipid in chlorosomes from Chlorobium limicola: characterization of the resultant chlorosomes. Kakitani Y; Harada K; Mizoguchi T; Koyama Y Biochemistry; 2007 Jun; 46(22):6513-24. PubMed ID: 17497832 [TBL] [Abstract][Full Text] [Related]
6. Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. Arellano JB; Torkkeli M; Tuma R; Laurinmäki P; Melø TB; Ikonen TP; Butcher SJ; Serimaa RE; Psencík J Langmuir; 2008 Mar; 24(5):2035-41. PubMed ID: 18197717 [TBL] [Abstract][Full Text] [Related]
7. Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. Saga Y; Shibata Y; Itoh S; Tamiaki H J Phys Chem B; 2007 Nov; 111(43):12605-9. PubMed ID: 17918876 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Montaño GA; Bowen BP; LaBelle JT; Woodbury NW; Pizziconi VB; Blankenship RE Biophys J; 2003 Oct; 85(4):2560-5. PubMed ID: 14507718 [TBL] [Abstract][Full Text] [Related]
9. Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. Frigaard NU; Li H; Milks KJ; Bryant DA J Bacteriol; 2004 Feb; 186(3):646-53. PubMed ID: 14729689 [TBL] [Abstract][Full Text] [Related]
10. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
11. Single supramolecule spectroscopy of natural and alkaline-treated chlorosomes from green sulfur photosynthetic bacteria. Saga Y; Wazawa T; Ishii Y; Yanagida T; Tamiaki H J Nanosci Nanotechnol; 2006 Jun; 6(6):1750-7. PubMed ID: 17025079 [TBL] [Abstract][Full Text] [Related]
12. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Pedersen MØ; Linnanto J; Frigaard NU; Nielsen NC; Miller M Photosynth Res; 2010 Jun; 104(2-3):233-43. PubMed ID: 20077007 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Frigaard NU; Li H; Martinsson P; Das SK; Frank HA; Aartsma TJ; Bryant DA Photosynth Res; 2005 Nov; 86(1-2):101-11. PubMed ID: 16172929 [TBL] [Abstract][Full Text] [Related]
14. Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. Frigaard NU; Voigt GD; Bryant DA J Bacteriol; 2002 Jun; 184(12):3368-76. PubMed ID: 12029054 [TBL] [Abstract][Full Text] [Related]
15. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Staehelin LA; Golecki JR; Drews G Biochim Biophys Acta; 1980 Jan; 589(1):30-45. PubMed ID: 7356977 [TBL] [Abstract][Full Text] [Related]
16. Introduction of perfluoroalkyl chain into the esterifying moiety of bacteriochlorophyll c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by pigment biosynthesis. Saga Y; Yamashita H; Hirota K Bioorg Med Chem; 2016 Sep; 24(18):4165-4170. PubMed ID: 27427396 [TBL] [Abstract][Full Text] [Related]
17. Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. Oostergetel GT; Reus M; Gomez Maqueo Chew A; Bryant DA; Boekema EJ; Holzwarth AR FEBS Lett; 2007 Nov; 581(28):5435-9. PubMed ID: 17981156 [TBL] [Abstract][Full Text] [Related]
18. Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. Psencík J; Collins AM; Liljeroos L; Torkkeli M; Laurinmäki P; Ansink HM; Ikonen TP; Serimaa RE; Blankenship RE; Tuma R; Butcher SJ J Bacteriol; 2009 Nov; 191(21):6701-8. PubMed ID: 19717605 [TBL] [Abstract][Full Text] [Related]
19. Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium chlorobium tepidum. Saga Y; Wazawa T; Mizoguchi T; Ishii Y; Yanagida T; Tamiaki H Photochem Photobiol; 2002 Apr; 75(4):433-6. PubMed ID: 12003135 [TBL] [Abstract][Full Text] [Related]