BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 15298928)

  • 1. Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS).
    Ruan Q; Cheng MA; Levi M; Gratton E; Mantulin WW
    Biophys J; 2004 Aug; 87(2):1260-7. PubMed ID: 15298928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning fluorescence correlation spectroscopy on biomembranes.
    Hermann E; Ries J; García-Sáez AJ
    Methods Mol Biol; 2015; 1232():181-97. PubMed ID: 25331137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes.
    Steinberger T; Macháň R; Hof M
    Methods Mol Biol; 2014; 1076():617-34. PubMed ID: 24108647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping, deformation, and rotation of giant unilamellar vesicles in octode dielectrophoretic field cages.
    Korlach J; Reichle C; Müller T; Schnelle T; Webb WW
    Biophys J; 2005 Jul; 89(1):554-62. PubMed ID: 15863477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane.
    Müller P; Schwille P; Weidemann T
    Methods Mol Biol; 2014; 1076():635-51. PubMed ID: 24108648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy.
    Korlach J; Baumgart T; Webb WW; Feigenson GW
    Biochim Biophys Acta; 2005 Mar; 1668(2):158-63. PubMed ID: 15737326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy.
    Ries J; Schwille P
    Biophys J; 2006 Sep; 91(5):1915-24. PubMed ID: 16782786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral diffusion of membrane proteins.
    Ramadurai S; Holt A; Krasnikov V; van den Bogaart G; Killian JA; Poolman B
    J Am Chem Soc; 2009 Sep; 131(35):12650-6. PubMed ID: 19673517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational diffusion and interaction of a photoreceptor and its cognate transducer observed in giant unilamellar vesicles by using dual-focus FCS.
    Kriegsmann J; Gregor I; von der Hocht I; Klare J; Engelhard M; Enderlein J; Fitter J
    Chembiochem; 2009 Jul; 10(11):1823-9. PubMed ID: 19551796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions.
    García-Sáez AJ; Schwille P
    Methods; 2008 Oct; 46(2):116-22. PubMed ID: 18634881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study.
    Guo L; Har JY; Sankaran J; Hong Y; Kannan B; Wohland T
    Chemphyschem; 2008 Apr; 9(5):721-8. PubMed ID: 18338419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of fluorescence correlation spectroscopy (FCS) to measure the dynamics of fluorescent proteins in living cells.
    Weidemann T
    Methods Mol Biol; 2014; 1076():539-55. PubMed ID: 24108643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular scanning fluorescence correlation spectroscopy on membranes.
    Petrášek Z; Derenko S; Schwille P
    Opt Express; 2011 Dec; 19(25):25006-21. PubMed ID: 22273893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.
    Schneider F; Waithe D; Galiani S; Bernardino de la Serna J; Sezgin E; Eggeling C
    Nano Lett; 2018 Jul; 18(7):4233-4240. PubMed ID: 29893574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.