BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15299041)

  • 1. Protective role of neuronal KATP channels in brain hypoxia.
    Ballanyi K
    J Exp Biol; 2004 Aug; 207(Pt 18):3201-12. PubMed ID: 15299041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression.
    Huang L; Li W; Li B; Zou F
    Neurosci Lett; 2006 May; 398(1-2):34-8. PubMed ID: 16426753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.
    Zhu HL; Luo WQ; Wang H
    Neuroscience; 2008 Dec; 157(4):884-94. PubMed ID: 18951957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ.
    Kulik A; Brockhaus J; Pedarzani P; Ballanyi K
    Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels.
    Sun HS; Feng ZP; Miki T; Seino S; French RJ
    J Neurophysiol; 2006 Apr; 95(4):2590-601. PubMed ID: 16354731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial K(ATP) channels in respiratory neurons and their role in the hypoxic facilitation of rhythmic activity.
    Mironov SL; Hartelt N; Ivannikov MV
    Brain Res; 2005 Feb; 1033(1):20-7. PubMed ID: 15680335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels.
    Huang CW; Huang CC; Cheng JT; Tsai JJ; Wu SN
    J Neurosci Res; 2007 May; 85(7):1468-77. PubMed ID: 17410601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ.
    Müller M; Brockhaus J; Ballanyi K
    Neuroscience; 2002; 109(2):313-28. PubMed ID: 11801367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia.
    Kron M; Müller M
    Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of ATP-sensitive potassium channels prevents the cleavage of cytosolic mu-calpain and abrogates the elevation of nuclear c-Fos and c-Jun expressions after hypoxic-ischemia in neonatal rat brain.
    Jiang KW; Yu ZS; Shui QX; Xia ZZ
    Brain Res Mol Brain Res; 2005 Jan; 133(1):87-94. PubMed ID: 15661368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of barbiturates on ATP-sensitive K channels in rat substantia nigra.
    Ohtsuka T; Ishiwa D; Kamiya Y; Itoh H; Nagata I; Saito Y; Yamada Y; Sumitomo M; Andoh T
    Neuroscience; 2006; 137(2):573-81. PubMed ID: 16289884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
    Judge SI; Smith PJ
    Expert Opin Ther Pat; 2009 Apr; 19(4):433-60. PubMed ID: 19441925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of K(ATP) channels in protection against neuronal excitatory insults.
    Soundarapandian MM; Zhong X; Peng L; Wu D; Lu Y
    J Neurochem; 2007 Dec; 103(5):1721-9. PubMed ID: 17944875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Protection mechanisms of ATP-sensitive K channels on hippocampal CA1 neurons during chronic severe hypoxia].
    Huang LY; Li WJ; Li BX; Zou F
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2007 Aug; 23(3):257-61. PubMed ID: 21162257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memantine inhibits ATP-dependent K+ conductances in dopamine neurons of the rat substantia nigra pars compacta.
    Giustizieri M; Cucchiaroni ML; Guatteo E; Bernardi G; Mercuri NB; Berretta N
    J Pharmacol Exp Ther; 2007 Aug; 322(2):721-9. PubMed ID: 17496164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia.
    Nisticò R; Piccirilli S; Sebastianelli L; Nisticò G; Bernardi G; Mercuri NB
    Int Rev Neurobiol; 2007; 82():383-95. PubMed ID: 17678973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The L-Type Ca+ and KATP channels may contribute to pacing-induced protection against anoxia-reoxygenation in the embryonic heart model.
    Bruchez P; Sarre A; Kappenberger L; Raddatz E
    J Cardiovasc Electrophysiol; 2008 Nov; 19(11):1196-202. PubMed ID: 18554212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia modifies nuclear calcium uptake pathways in the cerebral cortex of the guinea-pig fetus.
    Zanelli SA; Spandou E; Mishra OP; Delivoria-Papadopoulos M
    Neuroscience; 2005; 130(4):949-55. PubMed ID: 15652992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of coriaria lactone on the ATP-sensitive potassium channels in pyrimidal neurons of rats].
    Zou X; Zhou H; Zhou S
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2003 Oct; 34(4):650-2. PubMed ID: 14619571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra.
    Andoh T; Ishiwa D; Kamiya Y; Echigo N; Goto T; Yamada Y
    Brain Res; 2006 Dec; 1124(1):55-61. PubMed ID: 17084818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.