These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1529907)

  • 1. The relationship between intracardiovascular smoke-like echo and erythrocyte rouleaux formation.
    Wang XF; Liu L; Cheng TO; Li ZA; Deng YB; Wang JE
    Am Heart J; 1992 Oct; 124(4):961-5. PubMed ID: 1529907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of red blood cell rouleaux formation studied by light scattering.
    Szolna-Chodór A; Bosek M; Grzegorzewski B
    J Biomed Opt; 2015 Feb; 20(2):25001. PubMed ID: 25649625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstruction of inferior vena caval orifice by giant left atrium in patients with mitral stenosis. A Doppler echocardiographic study from the right parasternal approach.
    Minagoe S; Yoshikawa J; Yoshida K; Akasaka T; Shakudo M; Maeda K; Tei C
    Circulation; 1992 Jul; 86(1):214-25. PubMed ID: 1617774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Echocardiographic "smoke" is produced by an interaction of erythrocytes and plasma proteins modulated by shear forces.
    Merino A; Hauptman P; Badimon L; Badimon JJ; Cohen M; Fuster V; Goldman M
    J Am Coll Cardiol; 1992 Dec; 20(7):1661-8. PubMed ID: 1452941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of anisotropic reflection of flowing blood using optical coherence tomography.
    Nam KH; Jeong B; Jung IO; Ha H; Kim KH; Lee SJ
    J Biomed Opt; 2011 Dec; 16(12):120502. PubMed ID: 22191907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sickle discocytes form more rouleaux in vitro than normal erythrocytes.
    Obiefuna PC; Photiades DP
    J Trop Med Hyg; 1990 Jun; 93(3):210-4. PubMed ID: 2348499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of rheology of red blood cell rouleaux in microchannels.
    Wang T; Pan TW; Xing ZW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041916. PubMed ID: 19518265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization.
    Barshtein G; Wajnblum D; Yedgar S
    Biophys J; 2000 May; 78(5):2470-4. PubMed ID: 10777743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experiment on aggregation of red cells under microgravity on STS 51-C.
    Dintenfass L; Osman P; Maguire B; Jedrzejczyk H
    Adv Space Res; 1986; 6(5):81-4. PubMed ID: 11542921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced rouleaux formation in interspecies populations of red cells.
    Sewchand L; Canham PB
    Can J Physiol Pharmacol; 1976 Aug; 54(4):437-42. PubMed ID: 974871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of rouleaux formation on blood coagulation.
    Riha P; Liao F; Stoltz JF
    Clin Hemorheol Microcirc; 1997; 17(4):341-6. PubMed ID: 9493903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.
    Pribush A; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):518-25. PubMed ID: 21036560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of red cell aggregation in pulsatile flow from ultrasonic Doppler power measurements.
    Cloutier G; Shung KK
    Biorheology; 1993; 30(5-6):443-61. PubMed ID: 8186410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor thrombus extending from the inferior vena cava into the right atrium: first manifestation of renal neoplasia in a patient with mitral stenosis.
    Brili S; Barberis VI; Drollias A; Barbetseas J; Stefanadis C
    Echocardiography; 2005 Sep; 22(8):693-4. PubMed ID: 16174128
    [No Abstract]   [Full Text] [Related]  

  • 17. Ultrasonic wave action upon the red blood cell agglutination in vitro.
    Doubrovski VA; Dvoretski KN
    Ultrasound Med Biol; 2000 May; 26(4):655-9. PubMed ID: 10856629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of rouleaux formation using TV image analyzer. I. Human erythrocytes.
    Shiga T; Imaizumi K; Harada N; Sekiya M
    Am J Physiol; 1983 Aug; 245(2):H252-8. PubMed ID: 6881359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of erythrocyte rouleaux in preheated normal serum: roles of albumin polymers and lysophosphatidylcholine.
    Forsdyke DR; Palfree RG; Takeda A
    Can J Biochem; 1982 Jul; 60(7):705-11. PubMed ID: 7116209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical implications of left atrial spontaneous echo contrast in mitral valve disease.
    Kranidis A; Koulouris S; Anthopoulos L
    J Heart Valve Dis; 1993 May; 2(3):267-72. PubMed ID: 8269118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.