BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15299262)

  • 1. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes.
    Browning JA; Saunders K; Urban JP; Wilkins RJ
    Biorheology; 2004; 41(3-4):299-308. PubMed ID: 15299262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes.
    Hall AC
    J Cell Physiol; 1999 Feb; 178(2):197-204. PubMed ID: 10048584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes.
    Sánchez JC; Danks TA; Wilkins RJ
    Gen Physiol Biophys; 2003 Dec; 22(4):487-500. PubMed ID: 15113121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes.
    Yellowley CE; Hancox JC; Donahue HJ
    J Cell Biochem; 2002; 86(2):290-301. PubMed ID: 12111998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of intracellular alkalinisation on intracellular Ca(2+) homeostasis in a human chondrocyte cell line.
    Browning JA; Wilkins RJ
    Pflugers Arch; 2002 Sep; 444(6):744-51. PubMed ID: 12355174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of mechanical stress on cartilage energy metabolism.
    Lee RB; Wilkins RJ; Razaq S; Urban JP
    Biorheology; 2002; 39(1-2):133-43. PubMed ID: 12082276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure.
    Jortikka MO; Parkkinen JJ; Inkinen RI; Kärner J; Järveläinen HT; Nelimarkka LO; Tammi MI; Lammi MJ
    Arch Biochem Biophys; 2000 Feb; 374(2):172-80. PubMed ID: 10666295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Na+ x H+ exchange by hydrostatic pressure in isolated bovine articular chondrocytes.
    Browning JA; Walker RE; Hall AC; Wilkins RJ
    Acta Physiol Scand; 1999 May; 166(1):39-45. PubMed ID: 10372977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes.
    Sánchez JC; Wilkins RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jan; 137(1):173-82. PubMed ID: 14720602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific induction of heat shock protein 90beta by high hydrostatic pressure.
    Elo MA; Sironen RK; Karjalainen HM; Kaarniranta K; Helminen HJ; Lammi MJ
    Biorheology; 2003; 40(1-3):141-6. PubMed ID: 12454398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic osmotic loading of chondrocytes using a novel microfluidic device.
    Chao PG; Tang Z; Angelini E; West AC; Costa KD; Hung CT
    J Biomech; 2005 Jun; 38(6):1273-81. PubMed ID: 15863112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro.
    Scherer K; Schünke M; Sellckau R; Hassenpflug J; Kurz B
    Biorheology; 2004; 41(3-4):323-33. PubMed ID: 15299265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes.
    Mizuno S
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C329-37. PubMed ID: 15643052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-channel regulation of chondrocyte matrix synthesis in 3D culture under static and dynamic compression.
    Mouw JK; Imler SM; Levenston ME
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):33-41. PubMed ID: 16767453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of chondrocytes calcium signalling by dynamic compression is independent of number of cycles.
    Pingguan-Murphy B; Lee DA; Bader DL; Knight MM
    Arch Biochem Biophys; 2005 Dec; 444(1):45-51. PubMed ID: 16289021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of short-term hydrostatic pressure on organization of stress fibers in cultured chondrocytes.
    Parkkinen JJ; Lammi MJ; Inkinen R; Jortikka M; Tammi M; Virtanen I; Helminen HJ
    J Orthop Res; 1995 Jul; 13(4):495-502. PubMed ID: 7545746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of REV5901 on intracellular calcium signalling in freshly isolated bovine articular chondrocytes.
    Qusous A; Parker E; Ali N; Mohmand SG; Kerrigan MJ
    Gen Physiol Biophys; 2012 Sep; 31(3):299-307. PubMed ID: 23047943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycle number and waveform of fluid flow affect bovine articular chondrocytes.
    Edlich M; Yellowley CE; Jacobs CR; Donahue HJ
    Biorheology; 2004; 41(3-4):315-22. PubMed ID: 15299264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose.
    Knight MM; Toyoda T; Lee DA; Bader DL
    J Biomech; 2006; 39(8):1547-51. PubMed ID: 15985265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrostatic pressure-induced changes in cellular protein synthesis.
    Lammi MJ; Elo MA; Sironen RK; Karjalainen HM; Kaarniranta K; Helminen HJ
    Biorheology; 2004; 41(3-4):309-13. PubMed ID: 15299263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.