BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15299282)

  • 1. Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators.
    Morel V; Quinn TM
    Biorheology; 2004; 41(3-4):509-19. PubMed ID: 15299282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants.
    Quinn TM; Grodzinsky AJ; Hunziker EB; Sandy JD
    J Orthop Res; 1998 Jul; 16(4):490-9. PubMed ID: 9747792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of damage in the articular surface on the cartilage response to injurious compression in vitro.
    Morel V; Berutto C; Quinn TM
    J Biomech; 2006; 39(5):924-30. PubMed ID: 16488230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis.
    Loening AM; James IE; Levenston ME; Badger AM; Frank EH; Kurz B; Nuttall ME; Hung HH; Blake SM; Grodzinsky AJ; Lark MW
    Arch Biochem Biophys; 2000 Sep; 381(2):205-12. PubMed ID: 11032407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading.
    Ewers BJ; Dvoracek-Driksna D; Orth MW; Haut RC
    J Orthop Res; 2001 Sep; 19(5):779-84. PubMed ID: 11562121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic response and mechanical properties of articular cartilage after injurious compression.
    Kurz B; Jin M; Patwari P; Cheng DM; Lark MW; Grodzinsky AJ
    J Orthop Res; 2001 Nov; 19(6):1140-6. PubMed ID: 11781016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrocyte death in mechanically injured articular cartilage--the influence of extracellular calcium.
    Amin AK; Huntley JS; Bush PG; Simpson AH; Hall AC
    J Orthop Res; 2009 Jun; 27(6):778-84. PubMed ID: 19030171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intermittent cyclic preloads on the response of articular cartilage explants to an excessive level of unconfined compression.
    Wei F; Golenberg N; Kepich ET; Haut RC
    J Orthop Res; 2008 Dec; 26(12):1636-42. PubMed ID: 18524003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage injury by ramp compression near the gel diffusion rate.
    Morel V; Quinn TM
    J Orthop Res; 2004 Jan; 22(1):145-51. PubMed ID: 14656673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines.
    Patwari P; Cook MN; DiMicco MA; Blake SM; James IE; Kumar S; Cole AA; Lark MW; Grodzinsky AJ
    Arthritis Rheum; 2003 May; 48(5):1292-301. PubMed ID: 12746902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to a standard culture medium alters the response of cartilage explants to injurious unconfined compression.
    Rundell SA; Haut RC
    J Biomech; 2006; 39(10):1933-8. PubMed ID: 16054152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress.
    Quinn TM; Allen RG; Schalet BJ; Perumbuli P; Hunziker EB
    J Orthop Res; 2001 Mar; 19(2):242-9. PubMed ID: 11347697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis?
    Silver FH; Bradica G; Tria A
    Matrix Biol; 2004 Nov; 23(7):467-76. PubMed ID: 15579313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an in vitro model of injury-induced osteoarthritis in cartilage explants from adult horses through application of single-impact compressive overload.
    Lee CM; Kisiday JD; McIlwraith CW; Grodzinsky AJ; Frisbie DD
    Am J Vet Res; 2013 Jan; 74(1):40-7. PubMed ID: 23270344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prestrain decreases cartilage susceptibility to injury by ramp compression in vitro.
    Morel V; Merçay A; Quinn TM
    Osteoarthritis Cartilage; 2005 Nov; 13(11):964-70. PubMed ID: 16165378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading.
    Wolf A; Raiss RX; Steinmeyer J
    J Orthop Res; 2003 Nov; 21(6):1081-9. PubMed ID: 14554222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Williams GM; Upton ML; Setton LA; Guilak F
    J Biomech; 2005 Mar; 38(3):509-17. PubMed ID: 15652549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.