BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15299473)

  • 1. Cross-validation tests of time-averaged molecular dynamics refinements for determination of protein structures by X-ray crystallography.
    Clarage JB; Phillips GN
    Acta Crystallogr D Biol Crystallogr; 1994 Jan; 50(Pt 1):24-36. PubMed ID: 15299473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-validation technique for protein structure refinement: the extended Hamilton test.
    Bacchi A; Lamzin VS; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 1996 Jul; 52(Pt 4):641-6. PubMed ID: 15299627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient anisotropic refinement of macromolecular structures using FFT.
    Murshudov GN; Vagin AA; Lebedev A; Wilson KS; Dodson EJ
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):247-55. PubMed ID: 10089417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-matrix refinement of the protein crambin at 0.83 A and 130 K.
    Stec B; Zhou R; Teeter MM
    Acta Crystallogr D Biol Crystallogr; 1995 Sep; 51(Pt 5):663-81. PubMed ID: 15299796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.
    Heller WT
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):33-44. PubMed ID: 15608373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography.
    DePristo MA; de Bakker PI; Blundell TL
    Structure; 2004 May; 12(5):831-8. PubMed ID: 15130475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints.
    Zarychta B; Zaleski J; Kyzioł J; Daszkiewicz Z; Jelsch C
    Acta Crystallogr B; 2011 Jun; 67(Pt 3):250-62. PubMed ID: 21586833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can molecular dynamics simulations provide high-resolution refinement of protein structure?
    Chen J; Brooks CL
    Proteins; 2007 Jun; 67(4):922-30. PubMed ID: 17373704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of uncertainties in X-ray refinement results by use of perturbed structures.
    Kuriyan J; Karplus M; Petsko GA
    Proteins; 1987; 2(1):1-12. PubMed ID: 3447165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the application of molecular-dynamics simulations to validate thermal parameters and to optimize TLS-group selection for macromolecular refinement.
    Glykos NM
    Acta Crystallogr D Biol Crystallogr; 2007 Jun; 63(Pt 6):705-13. PubMed ID: 17505109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity.
    Saijo S; Yamada Y; Sato T; Tanaka N; Matsui T; Sazaki G; Nakajima K; Matsuura Y
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):207-17. PubMed ID: 15735330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural dynamics of myoglobin.
    Brunori M; Bourgeois D; Vallone B
    Methods Enzymol; 2008; 437():397-416. PubMed ID: 18433639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-averaging crystallographic refinement: possibilities and limitations using alpha-cyclodextrin as a test system.
    Schiffer CA; Gros P; van Gunsteren WF
    Acta Crystallogr D Biol Crystallogr; 1995 Jan; 51(Pt 1):85-92. PubMed ID: 15299339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ensemble of crystallographic models enables the description of novel bromate-oxoanion species trapped within a protein crystal.
    Ondrácek J; Mesters JR
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):996-1001. PubMed ID: 16929100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Considerations for the refinement of low-resolution crystal structures.
    DeLaBarre B; Brunger AT
    Acta Crystallogr D Biol Crystallogr; 2006 Aug; 62(Pt 8):923-32. PubMed ID: 16855310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The determination of protonation states in proteins.
    Ahmed HU; Blakeley MP; Cianci M; Cruickshank DW; Hubbard JA; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):906-22. PubMed ID: 17642517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of maximum-entropy maps in the accurate refinement of a putative acylphosphatase using 1.3 A X-ray diffraction data.
    Nishibori E; Nakamura T; Arimoto M; Aoyagi S; Ago H; Miyano M; Ebisuzaki T; Sakata M
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):237-47. PubMed ID: 18323618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.