BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15299627)

  • 1. A self-validation technique for protein structure refinement: the extended Hamilton test.
    Bacchi A; Lamzin VS; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 1996 Jul; 52(Pt 4):641-6. PubMed ID: 15299627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validation tests of time-averaged molecular dynamics refinements for determination of protein structures by X-ray crystallography.
    Clarage JB; Phillips GN
    Acta Crystallogr D Biol Crystallogr; 1994 Jan; 50(Pt 1):24-36. PubMed ID: 15299473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-matrix refinement of the protein crambin at 0.83 A and 130 K.
    Stec B; Zhou R; Teeter MM
    Acta Crystallogr D Biol Crystallogr; 1995 Sep; 51(Pt 5):663-81. PubMed ID: 15299796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of phase accuracy by cross validation: the free R value. Methods and applications.
    Brünger AT
    Acta Crystallogr D Biol Crystallogr; 1993 Jan; 49(Pt 1):24-36. PubMed ID: 15299543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighting macromolecular diffraction data.
    Smith GD
    Acta Crystallogr D Biol Crystallogr; 1997 Jan; 53(Pt 1):41-8. PubMed ID: 15299970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved free R factors for cross-validation of macromolecular structure - importance for real-space refinement.
    Chen Z; Blanc E; Chapman MS
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):219-24. PubMed ID: 10089412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-density analysis of 1-nitroindoline: refinement quality using free R factors and restraints.
    Zarychta B; Zaleski J; Kyzioł J; Daszkiewicz Z; Jelsch C
    Acta Crystallogr B; 2011 Jun; 67(Pt 3):250-62. PubMed ID: 21586833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase improvement by cross-validated density modification.
    Roberts AL; Brünger AT
    Acta Crystallogr D Biol Crystallogr; 1995 Nov; 51(Pt 6):990-1002. PubMed ID: 15299767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural refinement of the DNA-containing capsid of canine parvovirus using RSRef, a resolution-dependent stereochemically restrained real-space refinement method.
    Chapman MS; Rossmann MG
    Acta Crystallogr D Biol Crystallogr; 1996 Jan; 52(Pt 1):129-42. PubMed ID: 15299734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-averaging crystallographic refinement: possibilities and limitations using alpha-cyclodextrin as a test system.
    Schiffer CA; Gros P; van Gunsteren WF
    Acta Crystallogr D Biol Crystallogr; 1995 Jan; 51(Pt 1):85-92. PubMed ID: 15299339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental determination of optimal root-mean-square deviations of macromolecular bond lengths and angles from their restrained ideal values.
    Tickle IJ
    Acta Crystallogr D Biol Crystallogr; 2007 Dec; 63(Pt 12):1274-81; author reply 1282-3. PubMed ID: 18084075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRISM: topologically constrained phased refinement for macromolecular crystallography.
    Baker D; Bystroff C; Fletterick RJ; Agard DA
    Acta Crystallogr D Biol Crystallogr; 1993 Sep; 49(Pt 5):429-39. PubMed ID: 15299502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct-space methods in phase extension and phase refinement. IV. The double-histogram method.
    Refaat LS; Tate C; Woolfson MM
    Acta Crystallogr D Biol Crystallogr; 1996 Mar; 52(Pt 2):252-6. PubMed ID: 15299697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A re-evaluation of the crystal structure of chloromuconate cycloisomerase.
    Kleywegt GJ; Hoier H; Jones TA
    Acta Crystallogr D Biol Crystallogr; 1996 Jul; 52(Pt 4):858-63. PubMed ID: 15299651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-drug refinement: a comparison of the programs NUCLSQ, PROLSQ, SHELXL93 and X-PLOR, using the low-temperature d(TGATCA)-nogalamycin structure.
    Schuerman GS; Smith CK; Turkenburg JP; Dettmar AN; Van Meervelt L; Moore MH
    Acta Crystallogr D Biol Crystallogr; 1996 Mar; 52(Pt 2):299-314. PubMed ID: 15299703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-space methods in phase extension and phase refinement. VI. PERP (phase extension and refinement program).
    Refaat LS; Tate C; Woolfson MM
    Acta Crystallogr D Biol Crystallogr; 1996 Nov; 52(Pt 6):1119-24. PubMed ID: 15299572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias in cross-validated free R factors: mitigation of the effects of non-crystallographic symmetry.
    Fabiola F; Korostelev A; Chapman MS
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):227-38. PubMed ID: 16510969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.