These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 15300196)
1. RUNX3 inhibits cell proliferation and induces apoptosis by reinstating transforming growth factor beta responsiveness in esophageal adenocarcinoma cells. Torquati A; O'rear L; Longobardi L; Spagnoli A; Richards WO; Daniel Beauchamp R Surgery; 2004 Aug; 136(2):310-6. PubMed ID: 15300196 [TBL] [Abstract][Full Text] [Related]
2. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Chi XZ; Yang JO; Lee KY; Ito K; Sakakura C; Li QL; Kim HR; Cha EJ; Lee YH; Kaneda A; Ushijima T; Kim WJ; Ito Y; Bae SC Mol Cell Biol; 2005 Sep; 25(18):8097-107. PubMed ID: 16135801 [TBL] [Abstract][Full Text] [Related]
3. Possible involvement of RUNX3 silencing in the peritoneal metastases of gastric cancers. Sakakura C; Hasegawa K; Miyagawa K; Nakashima S; Yoshikawa T; Kin S; Nakase Y; Yazumi S; Yamagishi H; Okanoue T; Chiba T; Hagiwara A Clin Cancer Res; 2005 Sep; 11(18):6479-88. PubMed ID: 16166423 [TBL] [Abstract][Full Text] [Related]
4. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Saeki N; Kim DH; Usui T; Aoyagi K; Tatsuta T; Aoki K; Yanagihara K; Tamura M; Mizushima H; Sakamoto H; Ogawa K; Ohki M; Shiroishi T; Yoshida T; Sasaki H Oncogene; 2007 Oct; 26(45):6488-98. PubMed ID: 17471240 [TBL] [Abstract][Full Text] [Related]
5. Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Mabuchi M; Kataoka H; Miura Y; Kim TS; Kawaguchi M; Ebi M; Tanaka M; Mori Y; Kubota E; Mizushima T; Shimura T; Mizoshita T; Tanida S; Kamiya T; Asai K; Joh T Biochem Biophys Res Commun; 2010 Jul; 398(2):321-5. PubMed ID: 20599712 [TBL] [Abstract][Full Text] [Related]
7. Smad3 has a critical role in TGF-beta-mediated growth inhibition and apoptosis in colonic epithelial cells. Mithani SK; Balch GC; Shiou SR; Whitehead RH; Datta PK; Beauchamp RD J Surg Res; 2004 Apr; 117(2):296-305. PubMed ID: 15047135 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the role of TGF-beta type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function. Schniewind B; Groth S; Sebens Müerköster S; Sipos B; Schäfer H; Kalthoff H; Fändrich F; Ungefroren H Oncogene; 2007 Jul; 26(33):4850-62. PubMed ID: 17297450 [TBL] [Abstract][Full Text] [Related]
9. Fas/APO-1 (CD95) is not translocated to the cell membrane in esophageal adenocarcinoma. Hughes SJ; Nambu Y; Soldes OS; Hamstra D; Rehemtulla A; Iannettoni MD; Orringer MB; Beer DG Cancer Res; 1997 Dec; 57(24):5571-8. PubMed ID: 9407969 [TBL] [Abstract][Full Text] [Related]
10. Role of RUNX3 in bone morphogenetic protein signaling in colorectal cancer. Lee CW; Ito K; Ito Y Cancer Res; 2010 May; 70(10):4243-52. PubMed ID: 20442291 [TBL] [Abstract][Full Text] [Related]
11. Smad protein mediated transforming growth factor beta1 induction of apoptosis in the MDPC-23 odontoblast-like cell line. He WX; Niu ZY; Zhao SL; Smith AJ Arch Oral Biol; 2005 Nov; 50(11):929-36. PubMed ID: 16183370 [TBL] [Abstract][Full Text] [Related]
12. Peptide YY inhibits the growth of Barrett's esophageal adenocarcinoma in vitro. McFadden DW; Riggs DR; Jackson BJ; Vona-Davis L Am J Surg; 2004 Nov; 188(5):516-9. PubMed ID: 15546561 [TBL] [Abstract][Full Text] [Related]
13. Signaling cross-talk between IGF-binding protein-3 and transforming growth factor-(beta) in mesenchymal chondroprogenitor cell growth. O'Rear L; Longobardi L; Torello M; Law BK; Moses HL; Chiarelli F; Spagnoli A J Mol Endocrinol; 2005 Jun; 34(3):723-37. PubMed ID: 15956343 [TBL] [Abstract][Full Text] [Related]
14. Frequent silencing of RUNX3 in esophageal squamous cell carcinomas is associated with radioresistance and poor prognosis. Sakakura C; Miyagawa K; Fukuda KI; Nakashima S; Yoshikawa T; Kin S; Nakase Y; Ida H; Yazumi S; Yamagishi H; Okanoue T; Chiba T; Ito K; Hagiwara A; Ito Y Oncogene; 2007 Aug; 26(40):5927-38. PubMed ID: 17384682 [TBL] [Abstract][Full Text] [Related]
15. Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells. Edmiston JS; Yeudall WA; Chung TD; Lebman DA Cancer Res; 2005 Jun; 65(11):4782-8. PubMed ID: 15930298 [TBL] [Abstract][Full Text] [Related]
16. Growth regulation of gastric epithelial cells by Runx3. Fukamachi H; Ito K Oncogene; 2004 May; 23(24):4330-5. PubMed ID: 15156189 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta-mediated tumor necrosis factor-related apoptosis-inducing ligand expression and apoptosis in hepatoma cells requires functional cooperation between Smad proteins and activator protein-1. Herzer K; Grosse-Wilde A; Krammer PH; Galle PR; Kanzler S Mol Cancer Res; 2008 Jul; 6(7):1169-77. PubMed ID: 18644981 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Lafon C; Mathieu C; Guerrin M; Pierre O; Vidal S; Valette A Cell Growth Differ; 1996 Aug; 7(8):1095-104. PubMed ID: 8853906 [TBL] [Abstract][Full Text] [Related]
19. TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Zhu ML; Partin JV; Bruckheimer EM; Strup SE; Kyprianou N Prostate; 2008 Feb; 68(3):287-95. PubMed ID: 18163430 [TBL] [Abstract][Full Text] [Related]
20. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells. Gajewska M; Motyl T Comp Biochem Physiol C Toxicol Pharmacol; 2004 Oct; 139(1-3):65-75. PubMed ID: 15556067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]