These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15300760)

  • 1. The utility of a two-color fluorescence electrophoretic mobility shift assay procedure for the analysis of DNA replication complexes.
    Jing D; Beechem JM; Patton WF
    Electrophoresis; 2004 Aug; 25(15):2439-46. PubMed ID: 15300760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel view of gel-shifts: analysis of RNA-protein complexes using a two-color fluorescence dye procedure.
    Shcherbakov D; Piendl W
    Electrophoresis; 2007 Mar; 28(5):749-55. PubMed ID: 17315147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels.
    Jing D; Agnew J; Patton WF; Hendrickson J; Beechem JM
    Proteomics; 2003 Jul; 3(7):1172-80. PubMed ID: 12872218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An infrared imaging system for detecting electrophoretic mobility shift of DNA-protein complexes].
    Wang YF; Cai DH; Chen H; Mo YY; Yi N; Xing FY
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Feb; 29(2):289-91. PubMed ID: 19246302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based electrophoretic mobility shift assay in the analysis of DNA-binding proteins.
    Steiner S; Pfannschmidt T
    Methods Mol Biol; 2009; 479():273-89. PubMed ID: 19083181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the T4 helicase loading protein (gp59) and the DNA polymerase (gp43): unlocking of the gp59-gp43-DNA complex to initiate assembly of a fully functional replisome.
    Xi J; Zhang Z; Zhuang Z; Yang J; Spiering MM; Hammes GG; Benkovic SJ
    Biochemistry; 2005 May; 44(21):7747-56. PubMed ID: 15909989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exo-Taq-based detection of DNA-binding protein for homogeneous and microarray format.
    Fukumori T; Miyachi H; Yokoyama K
    J Biochem; 2005 Oct; 138(4):473-8. PubMed ID: 16272142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly and subunit stoichiometry of the functional helicase-primase (primosome) complex of bacteriophage T4.
    Jose D; Weitzel SE; Jing D; von Hippel PH
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13596-601. PubMed ID: 22869700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence gel retardation assay to detect protein-protein interactions.
    Park SH; Raines RT
    Methods Mol Biol; 2004; 261():155-60. PubMed ID: 15064455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies of the T4 DNA (gp41) replication helicase: functional interactions of the C-terminal Tails of the helicase subunits with the T4 (gp59) helicase loader protein.
    Delagoutte E; von Hippel PH
    J Mol Biol; 2005 Mar; 347(2):257-75. PubMed ID: 15740739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.
    Xiang DS; Zhou GH; Luo M; Ji XH; He ZK
    Analyst; 2012 Aug; 137(16):3787-93. PubMed ID: 22763945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of DNA-protein interactions using double-labeled native gel electrophoresis and fluorescence-based imaging.
    Forwood JK; Jans DA
    Electrophoresis; 2006 Aug; 27(16):3166-70. PubMed ID: 16915571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture of the bacteriophage T4 primosome: electron microscopy studies of helicase (gp41) and primase (gp61).
    Norcum MT; Warrington JA; Spiering MM; Ishmael FT; Trakselis MA; Benkovic SJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3623-6. PubMed ID: 15738414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators.
    Tuma RS; Beaudet MP; Jin X; Jones LJ; Cheung CY; Yue S; Singer VL
    Anal Biochem; 1999 Mar; 268(2):278-88. PubMed ID: 10075818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA electrophoretic mobility shift assay using a fluorescent DNA sequencer.
    Eguchi Y
    Methods Mol Biol; 2007; 353():115-24. PubMed ID: 17332637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New chimera proteins for fluorescence correlation spectroscopy.
    Olah Z; Trier U; Sauer B; Schäfer-Korting M; Kleuser B
    Pharmazie; 2004 Jul; 59(7):516-23. PubMed ID: 15296087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid chip-based capillary electrophoretic mobility shift assay with negative pressure injection for the binding study of transcription factor Abf1 in Saccharomyces cerevisiae.
    Yang Q; Zhao YC; Xiong Q; Cheng J
    Electrophoresis; 2008 Dec; 29(24):5003-9. PubMed ID: 19130580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standard in vitro assays for protein-nucleic acid interactions--gel shift assays for RNA and DNA binding.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 541():179-96. PubMed ID: 24674072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic mobility shift assay for characterizing RNA-protein interaction.
    Gagnon KT; Maxwell ES
    Methods Mol Biol; 2011; 703():275-91. PubMed ID: 21125497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles and problems of the electrophoretic mobility shift assay.
    Holden NS; Tacon CE
    J Pharmacol Toxicol Methods; 2011; 63(1):7-14. PubMed ID: 20348003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.