BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15301953)

  • 1. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction.
    Marcotte PA; Richardson PL; Guo J; Barrett LW; Xu N; Gunasekera A; Glaser KB
    Anal Biochem; 2004 Sep; 332(1):90-9. PubMed ID: 15301953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins.
    Landry J; Slama JT; Sternglanz R
    Biochem Biophys Res Commun; 2000 Nov; 278(3):685-90. PubMed ID: 11095969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay.
    Liu Y; Gerber R; Wu J; Tsuruda T; McCarter JD
    Anal Biochem; 2008 Jul; 378(1):53-9. PubMed ID: 18358225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide.
    Smith BC; Denu JM
    Biochemistry; 2007 Dec; 46(50):14478-86. PubMed ID: 18027980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylation of Sirt2 by p300 attenuates its deacetylase activity.
    Han Y; Jin YH; Kim YJ; Kang BY; Choi HJ; Kim DW; Yeo CY; Lee KY
    Biochem Biophys Res Commun; 2008 Oct; 375(4):576-80. PubMed ID: 18722353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
    Avalos JL; Bever KM; Wolberger C
    Mol Cell; 2005 Mar; 17(6):855-68. PubMed ID: 15780941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).
    Trapp J; Meier R; Hongwiset D; Kassack MU; Sippl W; Jung M
    ChemMedChem; 2007 Oct; 2(10):1419-31. PubMed ID: 17628866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1.
    Napper AD; Hixon J; McDonagh T; Keavey K; Pons JF; Barker J; Yau WT; Amouzegh P; Flegg A; Hamelin E; Thomas RJ; Kates M; Jones S; Navia MA; Saunders JO; DiStefano PS; Curtis R
    J Med Chem; 2005 Dec; 48(25):8045-54. PubMed ID: 16335928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes.
    Fan Y; Ludewig R; Scriba GK
    Anal Biochem; 2009 Apr; 387(2):243-8. PubMed ID: 19454228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of human sirtuins by in situ generation of an acetylated lysine-ADP-ribose conjugate.
    Asaba T; Suzuki T; Ueda R; Tsumoto H; Nakagawa H; Miyata N
    J Am Chem Soc; 2009 May; 131(20):6989-96. PubMed ID: 19413317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin.
    McDonagh T; Hixon J; DiStefano PS; Curtis R; Napper AD
    Methods; 2005 Aug; 36(4):346-50. PubMed ID: 16085423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoresis-based sirtuin assay using non-peptide substrates.
    Fan Y; Hense M; Ludewig R; Weisgerber C; Scriba GK
    J Pharm Biomed Anal; 2011 Mar; 54(4):772-8. PubMed ID: 21074959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a capillary electrophoresis-based assay of sirtuin enzymes.
    Fan Y; Ludewig R; Imhof D; Scriba GK
    Electrophoresis; 2008 Sep; 29(18):3717-23. PubMed ID: 18850641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone deacetylase inhibitors that target tubulin.
    Schemies J; Sippl W; Jung M
    Cancer Lett; 2009 Aug; 280(2):222-32. PubMed ID: 19268440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect.
    Lara E; Mai A; Calvanese V; Altucci L; Lopez-Nieva P; Martinez-Chantar ML; Varela-Rey M; Rotili D; Nebbioso A; Ropero S; Montoya G; Oyarzabal J; Velasco S; Serrano M; Witt M; Villar-Garea A; Imhof A; Mato JM; Esteller M; Fraga MF
    Oncogene; 2009 Feb; 28(6):781-91. PubMed ID: 19060927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small molecule regulation of Sir2 protein deacetylases.
    Grubisha O; Smith BC; Denu JM
    FEBS J; 2005 Sep; 272(18):4607-16. PubMed ID: 16156783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRT1 regulates HIV transcription via Tat deacetylation.
    Pagans S; Pedal A; North BJ; Kaehlcke K; Marshall BL; Dorr A; Hetzer-Egger C; Henklein P; Frye R; McBurney MW; Hruby H; Jung M; Verdin E; Ott M
    PLoS Biol; 2005 Feb; 3(2):e41. PubMed ID: 15719057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.