These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 15302528)
1. Structure and function of snake venom cysteine-rich secretory proteins. Yamazaki Y; Morita T Toxicon; 2004 Sep; 44(3):227-31. PubMed ID: 15302528 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom. Peichoto ME; Mackessy SP; Teibler P; Tavares FL; Burckhardt PL; Breno MC; Acosta O; Santoro ML Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jul; 150(1):79-84. PubMed ID: 19285568 [TBL] [Abstract][Full Text] [Related]
3. Cobra venom contains a pool of cysteine-rich secretory proteins. Osipov AV; Levashov MY; Tsetlin VI; Utkin YN Biochem Biophys Res Commun; 2005 Mar; 328(1):177-82. PubMed ID: 15670767 [TBL] [Abstract][Full Text] [Related]
4. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Sunagar K; Johnson WE; O'Brien SJ; Vasconcelos V; Antunes A Mol Biol Evol; 2012 Jul; 29(7):1807-22. PubMed ID: 22319140 [TBL] [Abstract][Full Text] [Related]
5. Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): isolation of a cysteine-rich secretory protein, Helicopsin. Estrella A; Sánchez EE; Galán JA; Tao WA; Guerrero B; Navarrete LF; Rodríguez-Acosta A Arch Toxicol; 2011 Apr; 85(4):305-13. PubMed ID: 20931174 [TBL] [Abstract][Full Text] [Related]
6. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Tadokoro T; Modahl CM; Maenaka K; Aoki-Shioi N Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32178374 [TBL] [Abstract][Full Text] [Related]
7. Cysteine-rich secretory proteins in snake venoms form high affinity complexes with human and porcine beta-microseminoproteins. Hansson K; Kjellberg M; Fernlund P Toxicon; 2009 Aug; 54(2):128-37. PubMed ID: 19341830 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of a CRISP family Ca2+ -channel blocker derived from snake venom. Shikamoto Y; Suto K; Yamazaki Y; Morita T; Mizuno H J Mol Biol; 2005 Jul; 350(4):735-43. PubMed ID: 15953617 [TBL] [Abstract][Full Text] [Related]
9. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship. Ramazanova AS; Starkov VG; Osipov AV; Ziganshin RH; Filkin SY; Tsetlin VI; Utkin YN Toxicon; 2009 Jan; 53(1):162-8. PubMed ID: 19041663 [TBL] [Abstract][Full Text] [Related]
10. Diversity of toxic components from the venom of the evolutionarily distinct black whip snake, Demansia vestigiata. St Pierre L; Birrell GW; Earl ST; Wallis TP; Gorman JJ; de Jersey J; Masci PP; Lavin MF J Proteome Res; 2007 Aug; 6(8):3093-107. PubMed ID: 17608513 [TBL] [Abstract][Full Text] [Related]
11. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel. Wang J; Shen B; Guo M; Lou X; Duan Y; Cheng XP; Teng M; Niu L; Liu Q; Huang Q; Hao Q Biochemistry; 2005 Aug; 44(30):10145-52. PubMed ID: 16042391 [TBL] [Abstract][Full Text] [Related]
12. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Yamazaki Y; Hyodo F; Morita T Arch Biochem Biophys; 2003 Apr; 412(1):133-41. PubMed ID: 12646276 [TBL] [Abstract][Full Text] [Related]
13. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae). Urra FA; Pulgar R; Gutiérrez R; Hodar C; Cambiazo V; Labra A Toxicon; 2015 Dec; 108():19-31. PubMed ID: 26410112 [TBL] [Abstract][Full Text] [Related]
14. Novel transcripts in the maxillary venom glands of advanced snakes. Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490 [TBL] [Abstract][Full Text] [Related]
16. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Vonk FJ; Jackson K; Doley R; Madaras F; Mirtschin PJ; Vidal N Bioessays; 2011 Apr; 33(4):269-79. PubMed ID: 21271609 [TBL] [Abstract][Full Text] [Related]
17. Structural divergence of cysteine-rich secretory proteins in snake venoms. Matsunaga Y; Yamazaki Y; Hyodo F; Sugiyama Y; Nozaki M; Morita T J Biochem; 2009 Mar; 145(3):365-75. PubMed ID: 19106157 [TBL] [Abstract][Full Text] [Related]
18. Purification, crystallization and preliminary X-ray crystallographic analysis of a cysteine-rich secretory protein (CRISP) from Naja atra venom. Wang YL; Goh KX; Wu WG; Chen CJ Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1912-5. PubMed ID: 15388950 [TBL] [Abstract][Full Text] [Related]
19. Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Ogawa T; Chijiwa T; Oda-Ueda N; Ohno M Toxicon; 2005 Jan; 45(1):1-14. PubMed ID: 15581677 [TBL] [Abstract][Full Text] [Related]
20. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Phui Yee JS; Nanling G; Afifiyan F; Donghui M; Siew Lay P; Armugam A; Jeyaseelan K Biochimie; 2004 Feb; 86(2):137-49. PubMed ID: 15016453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]