These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15302941)

  • 1. Bayesian analysis of botanical epidemics using stochastic compartmental models.
    Gibson GJ; Kleczkowski A; Gilligan CA
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12120-4. PubMed ID: 15302941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting variability in biological control of a plant-pathogen system using stochastic models.
    Gibson GJ; Gilligan CA; Kleczkowski A
    Proc Biol Sci; 1999 Sep; 266(1430):1743-53. PubMed ID: 10518323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease.
    Kleczkowski A; Gilligan CA
    J R Soc Interface; 2007 Oct; 4(16):865-77. PubMed ID: 17638651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani.
    Lee TO; Khan Z; Kim SG; Kim YH
    J Microbiol Biotechnol; 2008 Sep; 18(9):1537-43. PubMed ID: 18852509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian inference for the onset time and epidemiological characteristics of emerging infectious diseases.
    Shi B; Yang S; Tan Q; Zhou L; Liu Y; Zhou X; Liu J
    Front Public Health; 2024; 12():1406566. PubMed ID: 38827615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods.
    O'Neill PD
    Math Biosci; 2002; 180():103-14. PubMed ID: 12387918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates.
    Boys RJ; Giles PR
    J Math Biol; 2007 Aug; 55(2):223-47. PubMed ID: 17361423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.
    Simon TE; Le Cointe R; Delarue P; Morlière S; Montfort F; Hervé MR; Poggi S
    PLoS One; 2014; 9(8):e105159. PubMed ID: 25127238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling.
    Choi B; Rempala GA
    Biostatistics; 2012 Jan; 13(1):153-65. PubMed ID: 21835814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.
    Korostil IA; Peters GW; Cornebise J; Regan DG
    Stat Med; 2013 May; 32(11):1917-53. PubMed ID: 22961869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian model choice for epidemic models with two levels of mixing.
    Knock ES; O'Neill PD
    Biostatistics; 2014 Jan; 15(1):46-59. PubMed ID: 23887980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting changes in the transmission rate of a stochastic epidemic model.
    Huang J; Morsomme R; Dunson D; Xu J
    Stat Med; 2024 May; 43(10):1867-1882. PubMed ID: 38409877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro.
    Eslaminejad Parizi T; Ansaria M; Elaminejad T
    Microb Pathog; 2012 Apr; 52(4):201-5. PubMed ID: 22261114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series.
    Li LM; Grassly NC; Fraser C
    Mol Biol Evol; 2017 Nov; 34(11):2982-2995. PubMed ID: 28981709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.
    Asad-Uz-Zaman M; Bhuiyan MR; Khan MA; Alam Bhuiyan MK; Latif MA
    C R Biol; 2015 Feb; 338(2):112-20. PubMed ID: 25595298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian analysis of experimental epidemics of foot-and-mouth disease.
    Streftaris G; Gibson GJ
    Proc Biol Sci; 2004 Jun; 271(1544):1111-7. PubMed ID: 15306359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.