These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15303319)

  • 21. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings.
    Frost CJ; Hunter MD
    New Phytol; 2008; 178(4):835-845. PubMed ID: 18346100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photosynthetic and defensive responses of two Mediterranean oaks to insect leaf herbivory.
    Fyllas NM; Chrysafi D; Avtzis DN; Moreira X
    Tree Physiol; 2022 Nov; 42(11):2282-2293. PubMed ID: 35766868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field.
    Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR
    Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature.
    Hobbie EA; Olszyk DM; Rygiewicz PT; Tingey DT; Johnson MG
    Tree Physiol; 2001 Sep; 21(15):1113-22. PubMed ID: 11581018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.
    Salminen JP; Roslin T; Karonen M; Sinkkonen J; Pihlaja K; Pulkkinen P
    J Chem Ecol; 2004 Sep; 30(9):1693-711. PubMed ID: 15586669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of elevated CO
    Li L; Wang M; Pokharel SS; Li C; Parajulee MN; Chen F; Fang W
    Plant Physiol Biochem; 2019 Dec; 145():84-94. PubMed ID: 31675526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of leaf beetle larvae to elevated [CO₂] and temperature depend on Eucalyptus species.
    Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M
    Oecologia; 2015 Feb; 177(2):607-17. PubMed ID: 25526844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of 11 yr of CO₂ enrichment on roots in a Florida scrub-oak ecosystem.
    Day FP; Schroeder RE; Stover DB; Brown ALP; Butnor JR; Dilustro J; Hungate BA; Dijkstra P; Duval BD; Seiler TJ; Drake BG; Hinkle CR
    New Phytol; 2013 Nov; 200(3):778-787. PubMed ID: 23528147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide.
    Springer CJ; DeLucia EH; Thomas RB
    Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community.
    Runion GB; Davis MA; Pritchard SG; Prior SA; Mitchell RJ; Torbert HA; Rogers HH; Dute RR
    J Environ Qual; 2006; 35(4):1478-86. PubMed ID: 16825468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO₂ exposure in a subtropical oak woodland.
    Hungate BA; Dijkstra P; Wu Z; Duval BD; Day FP; Johnson DW; Megonigal JP; Brown ALP; Garland JL
    New Phytol; 2013 Nov; 200(3):753-766. PubMed ID: 23718224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Elevated Atmospheric Carbon Dioxide and Tropospheric Ozone on Phytochemical Composition of Trembling Aspen ( Populus tremuloides ) and Paper Birch ( Betula papyrifera ).
    Couture JJ; Meehan TD; Rubert-Nason KF; Lindroth RL
    J Chem Ecol; 2017 Jan; 43(1):26-38. PubMed ID: 27943083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature.
    Williams RS; Lincoln DE; Norby RJ
    Oecologia; 2003 Sep; 137(1):114-22. PubMed ID: 12844253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photosynthetic acclimation to elevated atmospheric CO(2) concentration in the Florida scrub-oak species Quercus geminata and Quercus myrtifolia growing in their native environment.
    Li JH; Dijkstra P; Hinkle CR; Wheeler RM; Drake BG
    Tree Physiol; 1999 Apr; 19(4_5):229-234. PubMed ID: 12651565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).
    O'Neill BF; Zangerl AR; Dermody O; Bilgin DD; Casteel CL; Zavala JA; DeLucia EH; Berenbaum MR
    J Chem Ecol; 2010 Jan; 36(1):35-45. PubMed ID: 20077130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.
    Nabity PD; Hillstrom ML; Lindroth RL; DeLucia EH
    Oecologia; 2012 Aug; 169(4):905-13. PubMed ID: 22358995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oak loss increases foliar nitrogen, δ(15)N and growth rates of Betula lenta in a northern temperate deciduous forest.
    Falxa-Raymond N; Patterson AE; Schuster WS; Griffin KL
    Tree Physiol; 2012 Sep; 32(9):1092-101. PubMed ID: 22851552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings.
    Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K
    J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of elevated CO2 on the extractable amino acids of leaf litter and fine roots.
    Top SM; Filley TR
    New Phytol; 2014 Jun; 202(4):1257-1266. PubMed ID: 24635834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.