BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15303738)

  • 1. Results from the multi-species benchmark problem 3 (BM3) using two-dimensional models.
    Noguera DR; Picioreanu C
    Water Sci Technol; 2004; 49(11-12):169-76. PubMed ID: 15303738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Results from the multi-species benchmark problem (BM3) using one-dimensional models.
    Rittmann BE; Schwarz AO; Eberl HJ; Morgenroth E; Perez J; van Loosdrecht M; Wanner O
    Water Sci Technol; 2004; 49(11-12):163-8. PubMed ID: 15303737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to the IWA task group on biofilm modeling.
    Noguera DR; Morgenroth E
    Water Sci Technol; 2004; 49(11-12):131-6. PubMed ID: 15303733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional cellular automaton model for mixed-culture biofilm.
    Pizarro GE; García C; Moreno R; Sepúlveda ME
    Water Sci Technol; 2004; 49(11-12):193-8. PubMed ID: 15303741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing biofilm models for a single species biofilm system.
    Morgenroth E; Eberl HJ; van Loosdrecht MC; Noguera DR; Pizarro GE; Picioreanu C; Rittmann BE; Schwarz AO; Wanner O
    Water Sci Technol; 2004; 49(11-12):145-54. PubMed ID: 15303735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging.
    Xavier JB; Picioreanu C; van Loosdrecht MC
    Water Sci Technol; 2004; 49(11-12):177-85. PubMed ID: 15303739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for multidimensional modelling of activity and structure of multispecies biofilms.
    Xavier JB; Picioreanu C; van Loosdrecht MC
    Environ Microbiol; 2005 Aug; 7(8):1085-103. PubMed ID: 16011747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multidimensional multispecies continuum model for heterogeneous biofilm development.
    Alpkvist E; Klapper I
    Bull Math Biol; 2007 Feb; 69(2):765-89. PubMed ID: 17211734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment.
    Duddu R; Chopp DL; Moran B
    Biotechnol Bioeng; 2009 May; 103(1):92-104. PubMed ID: 19213021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3349-61. PubMed ID: 15276752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new mathematical model for chemotactic bacterial colony growth.
    Alpkvist E; Overgaard NC; Gustafsson S; Heyden A
    Water Sci Technol; 2004; 49(11-12):187-92. PubMed ID: 15303740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm modeling with AQUASIM.
    Wanner O; Morgenroth E
    Water Sci Technol; 2004; 49(11-12):137-44. PubMed ID: 15303734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early development and quorum sensing in bacterial biofilms.
    Ward JP; King JR; Koerber AJ; Croft JM; Sockett RE; Williams P
    J Math Biol; 2003 Jul; 47(1):23-55. PubMed ID: 12827447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified model for the steady-state biofilm-activated sludge reactor.
    Fouad M; Bhargava R
    J Environ Manage; 2005 Feb; 74(3):245-53. PubMed ID: 15644264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general description of detachment for multidimensional modelling of biofilms.
    Xavier Jde B; Picioreanu C; van Loosdrecht MC
    Biotechnol Bioeng; 2005 Sep; 91(6):651-69. PubMed ID: 15918167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1998 Mar; 57(6):718-31. PubMed ID: 10099251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling a spatially heterogeneous biofilm and the bulk fluid: selected results from benchmark problem 2 (BM2).
    Eberl HJ; van Loosdrecht MC; Morgenroth E; Noguera DR; Perez J; Picioreanu C; Rittmann BE; Schwarz AO; Wanner O
    Water Sci Technol; 2004; 49(11-12):155-62. PubMed ID: 15303736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model for biofilm-based microbial fuel cells.
    Picioreanu C; Head IM; Katuri KP; van Loosdrecht MC; Scott K
    Water Res; 2007 Jul; 41(13):2921-40. PubMed ID: 17537478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.