These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15304056)

  • 1. Cross-linked gamma-chains in a fibrin fibril are situated transversely between its strands.
    Weisel JW
    J Thromb Haemost; 2004 Aug; 2(8):1467-9; discussion 1469-73. PubMed ID: 15304056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linked gamma-chains in fibrin fibrils bridge transversely between strands: no.
    Weisel JW
    J Thromb Haemost; 2004 Mar; 2(3):394-9. PubMed ID: 15009453
    [No Abstract]   [Full Text] [Related]  

  • 3. Determination of the topology of factor XIIIa-induced fibrin gamma-chain cross-links by electron microscopy of ligated fragments.
    Weisel JW; Francis CW; Nagaswami C; Marder VJ
    J Biol Chem; 1993 Dec; 268(35):26618-24. PubMed ID: 7902838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linked gamma-chains in fibrin fibrils bridge 'transversely' between strands: yes.
    Mosesson MW
    J Thromb Haemost; 2004 Mar; 2(3):388-93. PubMed ID: 15009452
    [No Abstract]   [Full Text] [Related]  

  • 5. Progressive cross-linking of fibrin gamma chains increases resistance to fibrinolysis.
    Siebenlist KR; Mosesson MW
    J Biol Chem; 1994 Nov; 269(45):28414-9. PubMed ID: 7961782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils.
    Mosesson MW; Siebenlist KR; Hainfeld JF; Wall JS
    J Struct Biol; 1995; 115(1):88-101. PubMed ID: 7577232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position of gamma-chain carboxy-terminal regions in fibrinogen/fibrin cross-linking mixtures.
    Siebenlist KR; Meh DA; Mosesson MW
    Biochemistry; 2000 Nov; 39(46):14171-5. PubMed ID: 11087365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy.
    Collet JP; Park D; Lesty C; Soria J; Soria C; Montalescot G; Weisel JW
    Arterioscler Thromb Vasc Biol; 2000 May; 20(5):1354-61. PubMed ID: 10807754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monoclonal antibody to the fibrinogen gamma-chain alters fibrin clot structure and its properties by producing short, thin fibers arranged in bundles.
    Scheiner T; Jirousková M; Nagaswami C; Coller BS; Weisel JW
    J Thromb Haemost; 2003 Dec; 1(12):2594-602. PubMed ID: 14675095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis.
    Hethershaw EL; Cilia La Corte AL; Duval C; Ali M; Grant PJ; Ariëns RA; Philippou H
    J Thromb Haemost; 2014 Feb; 12(2):197-205. PubMed ID: 24261582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of gamma' fibrinogen splice variant on fibrin physical properties and fibrinolysis rate.
    Collet JP; Nagaswami C; Farrell DH; Montalescot G; Weisel JW
    Arterioscler Thromb Vasc Biol; 2004 Feb; 24(2):382-6. PubMed ID: 14656741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of plasminogen with polymerizing fibrin and its derivatives, monitored with a photoaffinity cross-linker and electron microscopy.
    Weisel JW; Nagaswami C; Korsholm B; Petersen LC; Suenson E
    J Mol Biol; 1994 Jan; 235(3):1117-35. PubMed ID: 8289311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical determinants of fibrinolysis in single fibrin fibers.
    Bucay I; O'Brien ET; Wulfe SD; Superfine R; Wolberg AS; Falvo MR; Hudson NE
    PLoS One; 2015; 10(2):e0116350. PubMed ID: 25714359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrin structures during tissue-type plasminogen activator-mediated fibrinolysis studied by laser light scattering: relation to fibrin enhancement of plasminogen activation.
    Bauer R; Hansen SL; Jones G; Suenson E; Thorsen S; Ogendal L
    Eur Biophys J; 1994; 23(4):239-52. PubMed ID: 7805626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching.
    Baradet TC; Haselgrove JC; Weisel JW
    Biophys J; 1995 Apr; 68(4):1551-60. PubMed ID: 7787040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The location of the carboxy-terminal region of gamma chains in fibrinogen and fibrin D domains.
    Mosesson MW; Siebenlist KR; Meh DA; Wall JS; Hainfeld JF
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10511-6. PubMed ID: 9724734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compaction of fibrin clots reveals the antifibrinolytic effect of factor XIII.
    Rijken DC; Abdul S; Malfliet JJ; Leebeek FW; Uitte de Willige S
    J Thromb Haemost; 2016 Jul; 14(7):1453-61. PubMed ID: 27148673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation of the carboxy-terminal regions of fibrin gamma chain dimers determined from the crosslinked products formed in mixtures of fibrin, fragment D, and factor XIIIa.
    Siebenlist KR; Meh DA; Wall JS; Hainfeld JF; Mosesson MW
    Thromb Haemost; 1995 Oct; 74(4):1113-9. PubMed ID: 8560422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrinogen assembly and crosslinking on a fibrin fragment E template.
    Mosesson MW; Siebenlist KR; Hernandez I; Wall JS; Hainfeld JF
    Thromb Haemost; 2002 Apr; 87(4):651-8. PubMed ID: 12008948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones.
    Longstaff C; Varjú I; Sótonyi P; Szabó L; Krumrey M; Hoell A; Bóta A; Varga Z; Komorowicz E; Kolev K
    J Biol Chem; 2013 Mar; 288(10):6946-56. PubMed ID: 23293023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.