These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 15304546)
1. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis. Sugita M; Kongo H; Shiba Y Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546 [TBL] [Abstract][Full Text] [Related]
2. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690 [TBL] [Abstract][Full Text] [Related]
4. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein. Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550 [TBL] [Abstract][Full Text] [Related]
5. S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Zaman K; Carraro S; Doherty J; Henderson EM; Lendermon E; Liu L; Verghese G; Zigler M; Ross M; Park E; Palmer LA; Doctor A; Stamler JS; Gaston B Mol Pharmacol; 2006 Oct; 70(4):1435-42. PubMed ID: 16857740 [TBL] [Abstract][Full Text] [Related]
6. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Li C; Naren AP Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089 [TBL] [Abstract][Full Text] [Related]
7. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease. Pasyk S; Li C; Ramjeesingh M; Bear CE Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216 [TBL] [Abstract][Full Text] [Related]
8. Surface expression of the cystic fibrosis transmembrane conductance regulator mutant DeltaF508 is markedly upregulated by combination treatment with sodium butyrate and low temperature. Heda GD; Marino CR Biochem Biophys Res Commun; 2000 May; 271(3):659-64. PubMed ID: 10814518 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
10. Correctors promote folding of the CFTR in the endoplasmic reticulum. Loo TW; Bartlett MC; Clarke DM Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776 [TBL] [Abstract][Full Text] [Related]
11. Differential regulation of cystic fibrosis transmembrane conductance regulator by interferon gamma in mast cells and epithelial cells. Kulka M; Dery R; Nahirney D; Duszyk M; Befus AD J Pharmacol Exp Ther; 2005 Nov; 315(2):563-70. PubMed ID: 16051699 [TBL] [Abstract][Full Text] [Related]
12. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones. Wang Y; Bartlett MC; Loo TW; Clarke DM Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886 [TBL] [Abstract][Full Text] [Related]
13. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M; Zhang JT Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334 [TBL] [Abstract][Full Text] [Related]
14. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation. Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088 [TBL] [Abstract][Full Text] [Related]
15. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Du K; Sharma M; Lukacs GL Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635 [TBL] [Abstract][Full Text] [Related]
16. Is it go or NO go for S-nitrosylation modification-based therapies of cystic fibrosis transmembrane regulator trafficking? Zeitlin PL Mol Pharmacol; 2006 Oct; 70(4):1155-8. PubMed ID: 16877677 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy. Kerem E Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796 [TBL] [Abstract][Full Text] [Related]
18. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. Tector M; Hartl FU EMBO J; 1999 Nov; 18(22):6290-8. PubMed ID: 10562541 [TBL] [Abstract][Full Text] [Related]
19. The intact CFTR protein mediates ATPase rather than adenylate kinase activity. Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200 [TBL] [Abstract][Full Text] [Related]
20. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network. Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]