BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15304736)

  • 1. Fermentative production of curdlan.
    Saudagar PS; Singhal RS
    Appl Biochem Biotechnol; 2004; 118(1-3):21-31. PubMed ID: 15304736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species.
    Kim MK; Lee IY; Ko JH; Rhee YH; Park YH
    Biotechnol Bioeng; 1999 Feb; 62(3):317-23. PubMed ID: 10099543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.
    West TP
    J Basic Microbiol; 2009 Dec; 49(6):589-92. PubMed ID: 19810049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced curdlan production with nitrogen feeding during polysaccharide synthesis by Rhizobium radiobacter.
    Wang XY; Dong JJ; Xu GC; Han RZ; Ni Y
    Carbohydr Polym; 2016 Oct; 150():385-91. PubMed ID: 27312649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carbon sources on production and properties of curdlan using
    Wan J; Wang Y; Jiang D; Gao H; Yang G; Yang X
    Prep Biochem Biotechnol; 2020; 50(9):857-864. PubMed ID: 32538270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.
    West TP; Nemmers B
    J Basic Microbiol; 2008 Feb; 48(1):65-8. PubMed ID: 18247398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources.
    Zhang Q; Sun J; Wang Z; Hang H; Zhao W; Zhuang Y; Chu J
    Bioresour Technol; 2018 Jul; 259():319-324. PubMed ID: 29573611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.
    Phillips KR; Pik J; Lawford HG; Lavers B; Kligerman A; Lawford GR
    Can J Microbiol; 1983 Oct; 29(10):1331-8. PubMed ID: 6362809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749.
    Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.
    Kai A; Ishino T; Arashida T; Hatanaka K; Akaike T; Matsuzaki K; Kaneko Y; Mimura T
    Carbohydr Res; 1993 Feb; 240():153-9. PubMed ID: 8458009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation.
    Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC
    Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).
    Portilho M; Matioli G; Zanin GM; de Moraes FF; Scamparini AR
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):864-9. PubMed ID: 18563660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.
    Liang Y; Zhu L; Ding H; Gao M; Zheng Z; Wu J; Zhan X
    Carbohydr Polym; 2017 Feb; 157():1687-1694. PubMed ID: 27987884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.
    Zhang HT; Zhan XB; Zheng ZY; Wu JR; Yu XB; Jiang Y; Lin CC
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):163-75. PubMed ID: 21472535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation].
    Wu J; Zhan X; Liu H; Zheng Z
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1035-9. PubMed ID: 18807988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749.
    Yu LJ; Wu JR; Zheng ZY; Zhan XB; Lin CC
    Curr Microbiol; 2011 Jul; 63(1):60-7. PubMed ID: 21533781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp.
    Liang Y; Zhu L; Gao M; Zheng Z; Wu J; Zhan X
    Int J Biol Macromol; 2018 Jan; 106():611-619. PubMed ID: 28807687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC 31749.
    West TP
    J Basic Microbiol; 2006; 46(2):153-7. PubMed ID: 16598829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis.
    Ruffing A; Mao Z; Ruizhen Chen R
    Metab Eng; 2006 Sep; 8(5):465-73. PubMed ID: 16890004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis.
    Gao H; Xie F; Zhang W; Tian J; Zou C; Jia C; Jin M; Huang J; Chang Z; Yang X; Jiang D
    Carbohydr Polym; 2020 Oct; 245():116486. PubMed ID: 32718606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.