These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 15304773)
21. Endo-exo synergism in cellulose hydrolysis revisited. Jalak J; Kurašin M; Teugjas H; Väljamäe P J Biol Chem; 2012 Aug; 287(34):28802-15. PubMed ID: 22733813 [TBL] [Abstract][Full Text] [Related]
22. The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Woodward J; Lima M; Lee NE Biochem J; 1988 Nov; 255(3):895-9. PubMed ID: 3214429 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of cellobiohydrolase I from Trichoderma reesei by palladium. Lassig JP; Shultz MD; Gooch MG; Evans BR; Woodward J Arch Biochem Biophys; 1995 Sep; 322(1):119-26. PubMed ID: 7574665 [TBL] [Abstract][Full Text] [Related]
25. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Jalak J; Väljamäe P Biotechnol Bioeng; 2010 Aug; 106(6):871-83. PubMed ID: 20506147 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Fang H; Zhao R; Li C; Zhao C Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063 [TBL] [Abstract][Full Text] [Related]
27. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Du J; Zhang X; Li X; Zhao J; Liu G; Gao B; Qu Y Bioresour Technol; 2018 Oct; 266():19-25. PubMed ID: 29940438 [TBL] [Abstract][Full Text] [Related]
28. The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Le Costaouëc T; Pakarinen A; Várnai A; Puranen T; Viikari L Bioresour Technol; 2013 Sep; 143():196-203. PubMed ID: 23796604 [TBL] [Abstract][Full Text] [Related]
29. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887 [TBL] [Abstract][Full Text] [Related]
30. Progress curves--a mean for functional classification of cellulases. Nutt A; Sild V; Pettersson G; Johansson G Eur J Biochem; 1998 Nov; 258(1):200-6. PubMed ID: 9851710 [TBL] [Abstract][Full Text] [Related]
31. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Várnai A; Viikari L; Marjamaa K; Siika-aho M Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135 [TBL] [Abstract][Full Text] [Related]
32. Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics. Jäger G; Wu Z; Garschhammer K; Engel P; Klement T; Rinaldi R; Spiess AC; Büchs J Biotechnol Biofuels; 2010 Aug; 3():18. PubMed ID: 20718965 [TBL] [Abstract][Full Text] [Related]
33. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Ko JK; Ximenes E; Kim Y; Ladisch MR Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138 [TBL] [Abstract][Full Text] [Related]
34. High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production. Fang H; Xia L Bioresour Technol; 2013 Sep; 144():693-7. PubMed ID: 23910529 [TBL] [Abstract][Full Text] [Related]
35. A synergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of-synergism experimental results. Converse AO; Optekar JD Biotechnol Bioeng; 1993 Jun; 42(1):145-8. PubMed ID: 18609659 [TBL] [Abstract][Full Text] [Related]
36. Colloidal Gold Cytochemistry of Endo-1,4-beta-Glucanase, 1,4-beta-D-Glucan Cellobiohydrolase, and Endo-1,4-beta-Xylanase: Ultrastructure of Sound and Decayed Birch Wood. Blanchette RA; Abad AR; Cease KR; Lovrien RE; Leathers TD Appl Environ Microbiol; 1989 Sep; 55(9):2293-301. PubMed ID: 16348009 [TBL] [Abstract][Full Text] [Related]
37. Lipopeptide produced from Liu J; Zhu N; Yang J; Yang Y; Wang R; Liu L; Yuan H Biotechnol Biofuels; 2017; 10():301. PubMed ID: 29255484 [TBL] [Abstract][Full Text] [Related]
38. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Xu Q; Knoshaug EP; Wang W; Alahuhta M; Baker JO; Yang S; Vander Wall T; Decker SR; Himmel ME; Zhang M; Wei H Microb Cell Fact; 2017 Jul; 16(1):126. PubMed ID: 28738851 [TBL] [Abstract][Full Text] [Related]
39. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Du J; Liang J; Gao X; Liu G; Qu Y Bioresour Technol; 2020 Jan; 295():122272. PubMed ID: 31669875 [TBL] [Abstract][Full Text] [Related]
40. Co-expression of endoglucanase and cellobiohydrolase from yak rumen in lactic acid bacteria and its preliminary application in whole-plant corn silage fermentation. Wan X; SunKang Y; Chen Y; Zhang Z; Gou H; Xue Y; Wang C; Wei Y; Yang Y Front Microbiol; 2024; 15():1442797. PubMed ID: 39355421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]