BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15305055)

  • 1. Genome architecture studied by nanoscale imaging: analyses among bacterial phyla and their implication to eukaryotic genome folding.
    Takeyasu K; Kim J; Ohniwa RL; Kobori T; Inose Y; Morikawa K; Ohta T; Ishihama A; Yoshimura SH
    Cytogenet Genome Res; 2004; 107(1-2):38-48. PubMed ID: 15305055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus.
    Morikawa K; Ohniwa RL; Kim J; Maruyama A; Ohta T; Takeyasu K
    Genes Cells; 2006 Apr; 11(4):409-23. PubMed ID: 16611244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy.
    Kim J; Yoshimura SH; Hizume K; Ohniwa RL; Ishihama A; Takeyasu K
    Nucleic Acids Res; 2004; 32(6):1982-92. PubMed ID: 15060178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical, molecular genetic, and structural analyses of the staphylococcal nucleoid.
    Morikawa K; Ohniwa RL; Kim J; Takeshita SL; Maruyama A; Inose Y; Takeyasu K; Ohta T
    Microsc Microanal; 2007 Feb; 13(1):30-5. PubMed ID: 17234034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy dissects the hierarchy of genome architectures in eukaryote, prokaryote, and chloroplast.
    Ohniwa RL; Morikawa K; Kim J; Kobori T; Hizume K; Matsumi R; Atomi H; Imanaka T; Ohta T; Wada C; Yoshimura SH; Takeyasu K
    Microsc Microanal; 2007 Feb; 13(1):3-12. PubMed ID: 17234031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription-coupled nucleoid architecture in bacteria.
    Ohniwa RL; Morikawa K; Takeshita SL; Kim J; Ohta T; Wada C; Takeyasu K
    Genes Cells; 2007 Oct; 12(10):1141-52. PubMed ID: 17903174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit.
    Kobori T; Kodama M; Hizume K; Yoshimura SH; Ohtani T; Takeyasu K
    J Electron Microsc (Tokyo); 2006 Jan; 55(1):31-40. PubMed ID: 16495343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidisciplinary perspectives on bacterial genome organization and dynamics.
    Dame RT; Espéli O; Grainger DC; Wiggins PA
    Mol Microbiol; 2012 Dec; 86(5):1023-30. PubMed ID: 23066904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-substrate lysis treatment combined with scanning probe microscopy revealed chromosome structures in eukaryotes and prokaryotes.
    Yoshimura SH; Kim J; Takeyasu K
    J Electron Microsc (Tokyo); 2003; 52(4):415-23. PubMed ID: 14599104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins.
    de Vries R
    Biochimie; 2010 Dec; 92(12):1715-21. PubMed ID: 20615449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Bacterial DNA Packaging in Early Stationary Phase by Competitive DNA Binding of Dps and IHF.
    Lee SY; Lim CJ; Dröge P; Yan J
    Sci Rep; 2015 Dec; 5():18146. PubMed ID: 26657062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
    Luijsterburg MS; Noom MC; Wuite GJ; Dame RT
    J Struct Biol; 2006 Nov; 156(2):262-72. PubMed ID: 16879983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization.
    Maurer S; Fritz J; Muskhelishvili G
    J Mol Biol; 2009 Apr; 387(5):1261-76. PubMed ID: 19254726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Force Microscopy Imaging and Analysis of Prokaryotic Genome Organization.
    Ohniwa RL; Maruyama H; Morikawa K; Takeyasu K
    Methods Mol Biol; 2018; 1837():147-160. PubMed ID: 30109610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Noncoding RNA Arranges Bacterial Chromosome Organization.
    Qian Z; Macvanin M; Dimitriadis EK; He X; Zhurkin V; Adhya S
    mBio; 2015 Aug; 6(4):. PubMed ID: 26307168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome.
    Hashimoto M; Ichimura T; Mizoguchi H; Tanaka K; Fujimitsu K; Keyamura K; Ote T; Yamakawa T; Yamazaki Y; Mori H; Katayama T; Kato J
    Mol Microbiol; 2005 Jan; 55(1):137-49. PubMed ID: 15612923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of the higher-order genome structure in a single Escherichia coli cell.
    Shindo E; Kubo K; Ohniwa RL; Takeyasu K; Yoshikawa K
    J Biotechnol; 2008 Jan; 133(2):172-6. PubMed ID: 17889955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and physical aspects of bacterial chromosome segregation.
    Woldringh CL; Nanninga N
    J Struct Biol; 2006 Nov; 156(2):273-83. PubMed ID: 16828313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.