These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15305448)

  • 61. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Redundant data and exact helical cone-beam reconstruction.
    Heuscher D; Brown K; Noo F
    Phys Med Biol; 2004 Jun; 49(11):2219-38. PubMed ID: 15248574
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Backprojection-filtration reconstruction without invoking a spatially varying weighting factor.
    Xia D; Cho S; Pan X
    Med Phys; 2010 Mar; 37(3):1201-9. PubMed ID: 20384257
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cone-beam reconstruction using the backprojection of locally filtered projections.
    Pack JD; Noo F; Clackdoyle R
    IEEE Trans Med Imaging; 2005 Jan; 24(1):70-85. PubMed ID: 15638187
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A quasiexact reconstruction algorithm for helical CT using a 3-Pi acquisition.
    Bontus C; Köhler T; Proksa R
    Med Phys; 2003 Sep; 30(9):2493-502. PubMed ID: 14528971
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Partial volume and aliasing artefacts in helical cone-beam CT.
    Zou Y; Sidky EY; Pan X
    Phys Med Biol; 2004 Jun; 49(11):2365-75. PubMed ID: 15248583
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of a cone angle weighted three-dimensional image reconstruction algorithm to reduce cone-beam artefacts.
    Gomi T; Koshida K; Miyati T
    Dentomaxillofac Radiol; 2006 Nov; 35(6):398-406. PubMed ID: 17082329
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dual helical cone-beam CT for inspecting large object.
    Zou X; Zeng L; Li Z
    J Xray Sci Technol; 2009; 17(3):233-51. PubMed ID: 19893215
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection.
    Li L; Chen Z; Xing Y; Zhang L; Kang K; Wang G
    Phys Med Biol; 2006 Nov; 51(21):5643-54. PubMed ID: 17047275
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [A 3-D image reconstruction algorithm based on helical CT raw data].
    Huo XK; Wei S; Cheng ZY
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):284-6. PubMed ID: 17039940
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Weighted FBP--a simple approximate 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch.
    Stierstorfer K; Rauscher A; Boese J; Bruder H; Schaller S; Flohr T
    Phys Med Biol; 2004 Jun; 49(11):2209-18. PubMed ID: 15248573
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new framework of image reconstruction from fan beam projections.
    Chen GH
    Med Phys; 2003 Jun; 30(6):1151-61. PubMed ID: 12852540
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.
    Park HG; Shin YG; Lee H
    Technol Cancer Res Treat; 2015 Dec; 14(6):709-20. PubMed ID: 24750005
    [TBL] [Abstract][Full Text] [Related]  

  • 74. On two versions of a 3-pi algorithm for spiral CT.
    Katsevich A
    Phys Med Biol; 2004 Jun; 49(11):2129-43. PubMed ID: 15248568
    [TBL] [Abstract][Full Text] [Related]  

  • 75. EnPiT: filtered back-projection algorithm for helical CT using an n-Pi acquisition.
    Bontus C; Köhler T; Proksa R
    IEEE Trans Med Imaging; 2005 Aug; 24(8):977-86. PubMed ID: 16092330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Formulation of four Katsevich algorithms in native geometry.
    Katsevich A; Taguchi K; Zamyatin AA
    IEEE Trans Med Imaging; 2006 Jul; 25(7):855-68. PubMed ID: 16827487
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Region-of-interest image reconstruction in circular cone-beam microCT.
    Cho S; Bian J; Pelizzari CA; Chen CT; He TC; Pan X
    Med Phys; 2007 Dec; 34(12):4923-33. PubMed ID: 18196817
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonseparable wavelet-based cone-beam reconstruction in 3-D rotational angiography.
    Bonnet S; Peyrin F; Turjman F; Prost R
    IEEE Trans Med Imaging; 2003 Mar; 22(3):360-7. PubMed ID: 12760553
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system.
    Schmidt TG; Fahrig R; Pelc NJ
    Med Phys; 2005 Nov; 32(11):3234-45. PubMed ID: 16370414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Volume-of-interest cone-beam CT using a 2.35 MV beam generated with a carbon target.
    Robar JL; Parsons D; Berman A; Macdonald A
    Med Phys; 2012 Jul; 39(7):4209-18. PubMed ID: 22830754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.