BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 15305582)

  • 1. Variability of cell cycle times measured in vivo in embryonic chick retina by continuous labelling with BUdR.
    Morris VB; Cowan R; Culpin D
    Nature; 1979 Jul; 280(5717):68-71. PubMed ID: 15305582
    [No Abstract]   [Full Text] [Related]  

  • 2. Cumulative labeling of embryonic mouse neural retina with bromodeoxyuridine supplied by an osmotic minipump.
    Farah MH
    J Neurosci Methods; 2004 Apr; 134(2):169-78. PubMed ID: 15003383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio).
    Li Z; Hu M; Ochocinska MJ; Joseph NM; Easter SS
    Dev Dyn; 2000 Nov; 219(3):391-401. PubMed ID: 11066095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential staining of chromatids reveals substitution of BUdr for thymine in "old" DNA strands.
    Michalova K; Jami J; Roussett JP; Ritz E; Bucchini D
    Exp Cell Res; 1978 Jul; 114(2):293-300. PubMed ID: 79491
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens.
    Fischer AJ; Reh TA
    Dev Biol; 2000 Apr; 220(2):197-210. PubMed ID: 10753510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the growth of the retinal cell population in embryonic chicks yielding proliferative ratios, numbers of proliferative and non-proliferative cells and cell-cycle times for successive generations of cell cycles.
    Morris VB; Cowan R
    Cell Prolif; 1995 Jul; 28(7):373-91. PubMed ID: 7548439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina.
    Rachel RA; Dolen G; Hayes NL; Lu A; Erskine L; Nowakowski RS; Mason CA
    J Neurosci; 2002 Jun; 22(11):4249-63. PubMed ID: 12040030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular effect of 5-bromodeoxyuridine on the mammalian embryo.
    Bannigan J; Langman J
    J Embryol Exp Morphol; 1979 Apr; 50():123-35. PubMed ID: 458350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate determination of the time of cell birth using a sequential labeling technique with [3H]-thymidine and bromodeoxyuridine ("window labeling").
    Repka AM; Adler R
    J Histochem Cytochem; 1992 Jul; 40(7):947-53. PubMed ID: 1607643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric measurement of cell cycle kinetics in rat Walker-256 carcinoma following in vivo and in vitro pulse labelling with bromodeoxyuridine.
    Fogt F; Wan J; O'Hara C; Bistrian BR; Blackburn GL; Istfan NW
    Cytometry; 1991; 12(1):33-41. PubMed ID: 1825629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoradiographic analysis of effects of 5-bromodeoxyuridine on neurogenesis in the chick embryo spinal cord.
    Bannigan JG
    Brain Res; 1987 Dec; 433(2):161-70. PubMed ID: 3690329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of proliferation and cell cycle length during development of the rat retina.
    Alexiades MR; Cepko C
    Dev Dyn; 1996 Mar; 205(3):293-307. PubMed ID: 8850565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of bullwhip neurons in the embryonic chicken retina.
    Fischer AJ; Stanke JJ; Ghai K; Scott M; Omar G
    J Comp Neurol; 2007 Aug; 503(4):538-49. PubMed ID: 17534934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the homeodomain transcription factor Meis2 in the embryonic and postnatal retina.
    Bumsted-O'Brien KM; Hendrickson A; Haverkamp S; Ashery-Padan R; Schulte D
    J Comp Neurol; 2007 Nov; 505(1):58-72. PubMed ID: 17729288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow cytometric cell cycle analysis using the quenching of 33258 Hoechst fluorescence by bromodeoxyuridine incorporation.
    Böhmer RM
    Cell Tissue Kinet; 1979 Jan; 12(1):101-10. PubMed ID: 369699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage in the vertebrate retina.
    Cayouette M; Poggi L; Harris WA
    Trends Neurosci; 2006 Oct; 29(10):563-70. PubMed ID: 16920202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial regulation of integrin vitronectin receptor mRNAs in the embryonic chick retina.
    Gervin DB; Cann GM; Clegg DO
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1084-96. PubMed ID: 8631624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells.
    Hu M; Easter SS
    Dev Biol; 1999 Mar; 207(2):309-21. PubMed ID: 10068465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development distribution of vimentin in the chick retina.
    Lemmon V; Rieser G
    Brain Res; 1983 Dec; 313(2):191-7. PubMed ID: 6141839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth hormone expression and neuroprotective activity in a quail neural retina cell line.
    Sanders EJ; Lin WY; Parker E; Harvey S
    Gen Comp Endocrinol; 2010 Jan; 165(1):111-9. PubMed ID: 19539627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.