BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1530580)

  • 1. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations.
    Kolesnik B; Heine CL; Schmidt R; Schmidt K; Mayer B; Gorren AC
    Free Radic Biol Med; 2014 Nov; 76():286-98. PubMed ID: 25236749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation.
    Varela E; Tien M
    Appl Environ Microbiol; 2003 Oct; 69(10):6025-31. PubMed ID: 14532058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control and autoxidation of class 1, 2 and 3 phytoglobins from Arabidopsis thaliana.
    Mot AC; Puscas C; Miclea P; Naumova-Letia G; Dorneanu S; Podar D; Dissmeyer N; Silaghi-Dumitrescu R
    Sci Rep; 2018 Sep; 8(1):13714. PubMed ID: 30209406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons.
    Quaye JA; Wood KE; Snelgrove C; Ouedraogo D; Gadda G
    J Biol Chem; 2024 May; 300(6):107381. PubMed ID: 38762175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Stereodynamic Redox-Interconversion Network of Vicinal Tertiary and Quaternary Carbon Stereocenters in Hydroquinone-Quinone Hybrid Dihydrobenzofurans.
    Storch G; Kim B; Mercado BQ; Miller SJ
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15107-15111. PubMed ID: 30230673
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zinatullina KM; Orekhova AV; Kasaikina OT; Khrameeva NP; Berezin MP; Rusina IF
    Russ Chem Bull; 2021; 70(10):1934-1938. PubMed ID: 34744411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Analysis of the Superoxide Dismutase Mimicry Exhibited by a Zinc(II) Complex with a Redox-Active Organic Ligand.
    Miliordos E; Moore JL; Obisesan SV; Oppelt J; Ivanović-Burmazović I; Goldsmith CR
    J Phys Chem A; 2024 Feb; 128(8):1491-1500. PubMed ID: 38354404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-Electron Reduction of O
    Zhou B; Gabbaï FP
    J Am Chem Soc; 2023 Jun; 145(25):13758-13767. PubMed ID: 37306561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research.
    Volkov V; Lobanov A; Voronkov M; Baygildiev T; Misin V; Tsivileva O
    Antioxidants (Basel); 2023 Jul; 12(8):. PubMed ID: 37627525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-centred redox activation of inert organoiridium anticancer catalysts.
    Zhang WY; Banerjee S; Hughes GM; Bridgewater HE; Song JI; Breeze BG; Clarkson GJ; Coverdale JPC; Sanchez-Cano C; Ponte F; Sicilia E; Sadler PJ
    Chem Sci; 2020 May; 11(21):5466-5480. PubMed ID: 34094073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting UV-blocking Mechanism of Lignin: Origin and Stabilization of Semiquinone Radicals.
    Fu Y; Xiao Y; Chen X; Qiu X; Qian Y
    Small Methods; 2024 Jan; ():e2301783. PubMed ID: 38195803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological autoxidation. I. Decontrolled iron: an ultimate carcinogen and toxicant: an hypothesis.
    Kon SH
    Med Hypotheses; 1978; 4(5):445-71. PubMed ID: 38381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the atomic and electronic mechanism of human manganese superoxide dismutase product inhibition.
    Borgstahl G; Azadmanesh J; Slobodnik K; Struble L; Lutz W; Coates L; Weiss K; Myles D; Kroll T
    Res Sq; 2024 Feb; ():. PubMed ID: 38405788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding and Stabilization of a Semiquinone Radical by an Artificial Metalloenzyme Containing a Binuclear Copper (II) Cofactor.
    Gay R; Masson Y; Ghattas W; Udry GAO; Herrero C; Urvoas A; Mahy JP; Ricoux R
    Chembiochem; 2024 Apr; ():e202400139. PubMed ID: 38682718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle.
    Raab M; Zeininger J; Suchorski Y; Genest A; Weigl C; Rupprechter G
    Nat Commun; 2023 Nov; 14(1):7186. PubMed ID: 37938552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii.
    Guillén F; Muñoz C; Gómez-Toribio V; Martínez AT; Jesús Martínez M
    Appl Environ Microbiol; 2000 Jan; 66(1):170-5. PubMed ID: 10618219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.