BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15305918)

  • 1. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model.
    Galbraith EA; Antonopoulos DA; White BA
    Environ Microbiol; 2004 Sep; 6(9):928-37. PubMed ID: 15305918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis.
    Bekele AZ; Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2010 Apr; 305(1):49-57. PubMed ID: 20158525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the suppressive subtractive hybridization method in Mycoplasma agalactiae species by the comparison of a field strain with the type strain PG2.
    Marenda MS; Vilei EM; Poumarat F; Frey J; Berthelot X
    Vet Res; 2004; 35(2):199-212. PubMed ID: 15099496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of suppressive subtractive hybridization to identify Flavobacterium columnare DNA sequences not shared with Flavobacterium johnsoniae.
    Olivares-Fuster O; Arias CR
    Lett Appl Microbiol; 2008 Jun; 46(6):605-12. PubMed ID: 18444979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet.
    Klieve AV; O'Leary MN; McMillen L; Ouwerkerk D
    J Appl Microbiol; 2007 Dec; 103(6):2065-73. PubMed ID: 18045390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of suppressive subtractive hybridization to uncover the metagenomic diversity of environmental samples.
    Galbraith EA; Antonopoulos DA; White BA
    Methods Mol Biol; 2008; 410():295-333. PubMed ID: 18642606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genetic differences between two clinical isolates of Streptococcus mutans by suppression subtractive hybridization.
    Guo LH; Shi JN; Zhang Y; Liu XD; Duan J; Wei S
    Oral Microbiol Immunol; 2006 Dec; 21(6):372-80. PubMed ID: 17064395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.
    Kröber M; Bekel T; Diaz NN; Goesmann A; Jaenicke S; Krause L; Miller D; Runte KJ; Viehöver P; Pühler A; Schlüter A
    J Biotechnol; 2009 Jun; 142(1):38-49. PubMed ID: 19480946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phylogenetic diversity analyse of rumen bacteria using culture independent method].
    Wang YL; Yang RH; Mao AJ; Wang JQ; Dong ZY
    Wei Sheng Wu Xue Bao; 2005 Dec; 45(6):915-9. PubMed ID: 16496703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester.
    Chouari R; Le Paslier D; Daegelen P; Ginestet P; Weissenbach J; Sghir A
    Environ Microbiol; 2005 Aug; 7(8):1104-15. PubMed ID: 16011748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression subtractive hybridisation allows selective sampling of metagenomic subsets of interest.
    Chew YV; Holmes AJ
    J Microbiol Methods; 2009 Aug; 78(2):136-43. PubMed ID: 19442689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic variability of rumen Selenomonads.
    Pristas P; Piknova M; Sprincova A; Javorsky P
    Folia Microbiol (Praha); 2008; 53(2):165-72. PubMed ID: 18837167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet.
    Perumbakkam S; Mitchell EA; Craig AM
    Antonie Van Leeuwenhoek; 2011 Feb; 99(2):231-40. PubMed ID: 20607404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of group-specific, 16S rRNA-targeted scissor probes for quantitative detection of predominant bacterial populations in dairy cattle rumen.
    Uyeno Y; Sekiguchi Y; Tajima K; Takenaka A; Kurihara M; Kamagata Y
    J Appl Microbiol; 2007 Nov; 103(5):1995-2005. PubMed ID: 17953610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening and identification of male-specific DNA fragments in common carps Cyprinus carpio using suppression subtractive hybridization.
    Chen JJ; Du QY; Yue YY; Dang BJ; Chang ZJ
    J Fish Biol; 2010 Aug; 77(2):403-13. PubMed ID: 20646164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression subtractive hybridization.
    Rebrikov DV; Desai SM; Siebert PD; Lukyanov SA
    Methods Mol Biol; 2004; 258():107-34. PubMed ID: 14970460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea.
    Treusch AH; Kletzin A; Raddatz G; Ochsenreiter T; Quaiser A; Meurer G; Schuster SC; Schleper C
    Environ Microbiol; 2004 Sep; 6(9):970-80. PubMed ID: 15305922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics.
    Stewart FJ; Ottesen EA; DeLong EF
    ISME J; 2010 Jul; 4(7):896-907. PubMed ID: 20220791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of competitive DNA hybridization to identify differences in the genomes of bacteria.
    Shanks OC; Santo Domingo JW; Graham JE
    J Microbiol Methods; 2006 Aug; 66(2):321-30. PubMed ID: 16469400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification Leptospira santarosai serovar shermani specific sequences by suppression subtractive hybridization.
    Hsieh WJ; Pan MJ
    FEMS Microbiol Lett; 2004 Jun; 235(1):117-24. PubMed ID: 15158270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.