These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 15305923)

  • 1. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes.
    Riesenfeld CS; Goodman RM; Handelsman J
    Environ Microbiol; 2004 Sep; 6(9):981-9. PubMed ID: 15305923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil.
    Allen HK; Moe LA; Rodbumrer J; Gaarder A; Handelsman J
    ISME J; 2009 Feb; 3(2):243-51. PubMed ID: 18843302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities.
    Guardabassi L; Agersø Y
    FEMS Microbiol Lett; 2006 Jun; 259(2):221-5. PubMed ID: 16734783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months.
    Heuer H; Smalla K
    Environ Microbiol; 2007 Mar; 9(3):657-66. PubMed ID: 17298366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting.
    Cantón R
    Clin Microbiol Infect; 2009 Jan; 15 Suppl 1():20-5. PubMed ID: 19220348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection.
    Patterson AJ; Colangeli R; Spigaglia P; Scott KP
    Environ Microbiol; 2007 Mar; 9(3):703-15. PubMed ID: 17298370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids.
    Binh CT; Heuer H; Kaupenjohann M; Smalla K
    FEMS Microbiol Ecol; 2008 Oct; 66(1):25-37. PubMed ID: 18557938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples.
    Abriouel H; Omar NB; Molinos AC; López RL; Grande MJ; Martínez-Viedma P; Ortega E; Cañamero MM; Galvez A
    Int J Food Microbiol; 2008 Mar; 123(1-2):38-49. PubMed ID: 18180067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and isolation of antimicrobial small molecules from soil DNA libraries.
    MacNeil IA; Tiong CL; Minor C; August PR; Grossman TH; Loiacono KA; Lynch BA; Phillips T; Narula S; Sundaramoorthi R; Tyler A; Aldredge T; Long H; Gilman M; Holt D; Osburne MS
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):301-8. PubMed ID: 11321587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia.
    Akinbowale OL; Peng H; Barton MD
    J Appl Microbiol; 2007 Nov; 103(5):2016-25. PubMed ID: 17953612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular diversity of nitrogen-fixing bacteria from the Tibetan Plateau, China.
    Zhang Y; Li D; Wang H; Xiao Q; Liu X
    FEMS Microbiol Lett; 2006 Jul; 260(2):134-42. PubMed ID: 16842336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination.
    Lejon DP; Nowak V; Bouko S; Pascault N; Mougel C; Martins JM; Ranjard L
    FEMS Microbiol Ecol; 2007 Sep; 61(3):424-37. PubMed ID: 17696885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of genetically modified microorganisms in soil using the most-probable-number method with multiplex PCR and DNA dot blot.
    Yeom J; Lee Y; Noh J; Jung J; Park J; Seo H; Kim J; Han J; Jeon CO; Kim T; Park W
    Res Microbiol; 2011 Oct; 162(8):807-16. PubMed ID: 21810467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules.
    Brady SF
    Nat Protoc; 2007; 2(5):1297-305. PubMed ID: 17546026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic diversity of Acidobacteria in a former agricultural soil.
    Kielak A; Pijl AS; van Veen JA; Kowalchuk GA
    ISME J; 2009 Mar; 3(3):378-82. PubMed ID: 19020558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil.
    Lee SH; Ka JO; Cho JC
    FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library.
    Chauhan NS; Ranjan R; Purohit HJ; Kalia VC; Sharma R
    FEMS Microbiol Ecol; 2009 Jan; 67(1):130-9. PubMed ID: 19016868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and genetic diversity of bacterial thiopurine methyltransferases in soils emitting dimethyl selenide.
    Favre-Bonté S; Ranjard L; Champier L; Cournoyer B; Nazaret S
    Biochimie; 2006 Nov; 88(11):1573-81. PubMed ID: 17007990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil DNA libraries for anticancer drug discovery.
    Pettit RK
    Cancer Chemother Pharmacol; 2004 Jul; 54(1):1-6. PubMed ID: 15071757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for novel lipolytic enzymes from uncultured soil microorganisms.
    Lee SW; Won K; Lim HK; Kim JC; Choi GJ; Cho KY
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):720-6. PubMed ID: 15365646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.