These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 15306011)
1. Pathogenicity of Stagonospora nodorum requires malate synthase. Solomon PS; Lee RC; Wilson TJ; Oliver RP Mol Microbiol; 2004 Aug; 53(4):1065-73. PubMed ID: 15306011 [TBL] [Abstract][Full Text] [Related]
2. Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Lowe RG; Lord M; Rybak K; Trengove RD; Oliver RP; Solomon PS Fungal Genet Biol; 2009 May; 46(5):381-9. PubMed ID: 19233304 [TBL] [Abstract][Full Text] [Related]
3. The disruption of a Galpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Solomon PS; Tan KC; Sanchez P; Cooper RM; Oliver RP Mol Plant Microbe Interact; 2004 May; 17(5):456-66. PubMed ID: 15141949 [TBL] [Abstract][Full Text] [Related]
4. Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum. Solomon PS; Rybak K; Trengove RD; Oliver RP Mol Microbiol; 2006 Oct; 62(2):367-81. PubMed ID: 17020577 [TBL] [Abstract][Full Text] [Related]
5. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Solomon PS; Waters OD; Jörgens CI; Lowe RG; Rechberger J; Trengove RD; Oliver RP Biochem J; 2006 Oct; 399(2):231-9. PubMed ID: 16859492 [TBL] [Abstract][Full Text] [Related]
6. Stagonospora nodorum: from pathology to genomics and host resistance. Oliver RP; Friesen TL; Faris JD; Solomon PS Annu Rev Phytopathol; 2012; 50():23-43. PubMed ID: 22559071 [TBL] [Abstract][Full Text] [Related]
7. Proteomic identification of extracellular proteins regulated by the Gna1 Galpha subunit in Stagonospora nodorum. Tan KC; Heazlewood JL; Millar AH; Oliver RP; Solomon PS Mycol Res; 2009 May; 113(5):523-31. PubMed ID: 19284980 [TBL] [Abstract][Full Text] [Related]
8. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Solomon PS; Tan KC; Oliver RP Mol Plant Microbe Interact; 2005 Feb; 18(2):110-5. PubMed ID: 15720079 [TBL] [Abstract][Full Text] [Related]
9. Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum. Solomon PS; Oliver RP Curr Genet; 2004 Aug; 46(2):115-21. PubMed ID: 15205912 [TBL] [Abstract][Full Text] [Related]
10. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Faris JD; Zhang Z; Rasmussen JB; Friesen TL Mol Plant Microbe Interact; 2011 Dec; 24(12):1419-26. PubMed ID: 21770771 [TBL] [Abstract][Full Text] [Related]
11. [Hydrogen peroxide production in wheat leaves infected with the fungus Septoria nodorum Berk. strains with different virulence]. Maksimov IV; Valeev ASh; Cherepanova EA; Iarullina LG Prikl Biokhim Mikrobiol; 2009; 45(4):481-6. PubMed ID: 19764620 [TBL] [Abstract][Full Text] [Related]
12. Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Zhao X; Wang Y; Zhao Y; Huang Y; Zhang KQ; Yang J Appl Microbiol Biotechnol; 2014 Mar; 98(6):2555-63. PubMed ID: 24323290 [TBL] [Abstract][Full Text] [Related]
13. A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Lowe RG; Lord M; Rybak K; Trengove RD; Oliver RP; Solomon PS Fungal Genet Biol; 2008 Nov; 45(11):1479-86. PubMed ID: 18796335 [TBL] [Abstract][Full Text] [Related]
14. The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. IpCho SV; Tan KC; Koh G; Gummer J; Oliver RP; Trengove RD; Solomon PS Eukaryot Cell; 2010 Jul; 9(7):1100-8. PubMed ID: 20495056 [TBL] [Abstract][Full Text] [Related]
15. A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression. Chung HJ; Kim MJ; Lim JY; Park SM; Cha BJ; Kim YH; Yang MS; Kim DH Fungal Genet Biol; 2006 May; 43(5):326-36. PubMed ID: 16540355 [TBL] [Abstract][Full Text] [Related]
16. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Friesen TL; Meinhardt SW; Faris JD Plant J; 2007 Aug; 51(4):681-92. PubMed ID: 17573802 [TBL] [Abstract][Full Text] [Related]
17. Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Shankar M; Walker E; Golzar H; Loughman R; Wilson RE; Francki MG Phytopathology; 2008 Aug; 98(8):886-93. PubMed ID: 18943206 [TBL] [Abstract][Full Text] [Related]
18. Delta-aminolaevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum. Solomon PS; Jörgens CI; Oliver RP Microbiology (Reading); 2006 May; 152(Pt 5):1533-1538. PubMed ID: 16622070 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional regulation of elsinochrome phytotoxin biosynthesis by an EfSTE12 activator in the citrus scab pathogen Elsinoë fawcettii. Yang SL; Chung KR Fungal Biol; 2010 Jan; 114(1):64-73. PubMed ID: 20965063 [TBL] [Abstract][Full Text] [Related]
20. A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. Vincent D; Du Fall LA; Livk A; Mathesius U; Lipscombe RJ; Oliver RP; Friesen TL; Solomon PS Mol Plant Pathol; 2012 Jun; 13(5):467-82. PubMed ID: 22111512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]