These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 15306023)

  • 1. The gate controlling cell wall synthesis in Staphylococcus aureus.
    Komatsuzawa H; Fujiwara T; Nishi H; Yamada S; Ohara M; McCallum N; Berger-Bächi B; Sugai M
    Mol Microbiol; 2004 Aug; 53(4):1221-31. PubMed ID: 15306023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The site of inhibition of cell wall synthesis by 3-amino-3-deoxy-D-glucose in Staphylococcus aureus.
    Tanaka H; Shimizu S; Oiwa R; Iwai Y; Omura S
    J Biochem; 1979 Jul; 86(1):155-9. PubMed ID: 479118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.
    Foley S; Stolarczyk E; Mouni F; Brassart C; Vidal O; Aïssi E; Bouquelet S; Krzewinski F
    Arch Microbiol; 2008 Feb; 189(2):157-67. PubMed ID: 17943273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus.
    Lünse CE; Schmidt MS; Wittmann V; Mayer G
    ACS Chem Biol; 2011 Jul; 6(7):675-8. PubMed ID: 21486059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex.
    Liu C; Li D; Liang YH; Li LF; Su XD
    J Mol Biol; 2008 May; 379(1):73-81. PubMed ID: 18436239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nitrogen Regulatory PII Protein (GlnB) and
    Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans.
    Moye ZD; Burne RA; Zeng L
    Appl Environ Microbiol; 2014 Aug; 80(16):5053-67. PubMed ID: 24928869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.
    Rodríguez-Díaz J; Rubio-Del-Campo A; Yebra MJ
    Bioengineered; 2012; 3(6):339-42. PubMed ID: 22825354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of Poly-β1,4-
    Keffeler EC; Parthasarathy S; Abdullahi ZH; Hancock LE
    J Bacteriol; 2021 Oct; 203(21):e0037121. PubMed ID: 34424034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations.
    Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J
    J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of glucosamine utilization in Staphylococcus aureus and Escherichia coli.
    Imada A; Nozaki Y; Kawashima F; Yoneda M
    J Gen Microbiol; 1977 Jun; 100(2):329-37. PubMed ID: 330812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics.
    Shimazu K; Takahashi Y; Uchikawa Y; Shimazu Y; Yajima A; Takashima E; Aoba T; Konishi K
    FEMS Immunol Med Microbiol; 2008 Jul; 53(2):166-77. PubMed ID: 18462386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine.
    Alvarez-Añorve LI; Bustos-Jaimes I; Calcagno ML; Plumbridge J
    J Bacteriol; 2009 Oct; 191(20):6401-7. PubMed ID: 19700525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.
    Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W
    J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus.
    Dubrac S; Boneca IG; Poupel O; Msadek T
    J Bacteriol; 2007 Nov; 189(22):8257-69. PubMed ID: 17827301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars.
    Popowska M; Osińska M; Rzeczkowska M
    Arch Microbiol; 2012 Apr; 194(4):255-68. PubMed ID: 21947170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of an N-acetylglucosamine biosynthesis inhibitor.
    Sacoman JL; Hollingsworth RI
    Carbohydr Res; 2011 Oct; 346(14):2294-9. PubMed ID: 21843880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of gene expression by a natural metabolite-responsive ribozyme.
    Winkler WC; Nahvi A; Roth A; Collins JA; Breaker RR
    Nature; 2004 Mar; 428(6980):281-6. PubMed ID: 15029187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.