These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15306380)

  • 1. Life at low water activity.
    Grant WD
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1249-66; discussion 1266-7. PubMed ID: 15306380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations.
    Gunde-Cimerman N; Plemenitaš A; Oren A
    FEMS Microbiol Rev; 2018 May; 42(3):353-375. PubMed ID: 29529204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmoadaptation and osmoregulation in archaea.
    Roberts MF
    Front Biosci; 2000 Sep; 5():D796-812. PubMed ID: 10966877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limits of life in MgCl2-containing environments: chaotropicity defines the window.
    Hallsworth JE; Yakimov MM; Golyshin PN; Gillion JL; D'Auria G; de Lima Alves F; La Cono V; Genovese M; McKew BA; Hayes SL; Harris G; Giuliano L; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Mar; 9(3):801-13. PubMed ID: 17298378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures.
    Bautista-Gallego J; Arroyo-López FN; Durán-Quintana MC; Garrido-Fernández A
    Food Microbiol; 2010 May; 27(3):403-12. PubMed ID: 20227606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmoadaptation and osmoregulation in archaea: update 2004.
    Roberts MF
    Front Biosci; 2004 Sep; 9():1999-2019. PubMed ID: 15353266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions.
    Jančič S; Frisvad JC; Kocev D; Gostinčar C; Džeroski S; Gunde-Cimerman N
    PLoS One; 2016; 11(12):e0169116. PubMed ID: 28036382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic osmolytes in methanogenic archaebacteria.
    Robertson DE; Roberts MF
    Biofactors; 1991 Jan; 3(1):1-9. PubMed ID: 1905546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spherical particles of halophilic archaea correlate with exposure to low water activity--implications for microbial survival in fluid inclusions of ancient halite.
    Fendrihan S; Dornmayr-Pfaffenhuemer M; Gerbl FW; Holzinger A; Grösbacher M; Briza P; Erler A; Gruber C; Plätzer K; Stan-Lotter H
    Geobiology; 2012 Sep; 10(5):424-33. PubMed ID: 22804926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific.
    Joghee NN; Jayaraman G
    Prep Biochem Biotechnol; 2016; 46(1):8-14. PubMed ID: 25286020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiology of a NaCl stalactite 'salticle' in Triassic halite.
    Thompson TP; Kelly SA; Skvortsov T; Plunkett G; Ruffell A; Hallsworth JE; Hopps J; Gilmore BF
    Environ Microbiol; 2021 Jul; 23(7):3881-3895. PubMed ID: 33848049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compatible solutes and extreme water stress in eukaryotic micro-organisms.
    Brown AD
    Adv Microb Physiol; 1978; 17():181-242. PubMed ID: 352106
    [No Abstract]   [Full Text] [Related]  

  • 13. Fungal adaptation to extremely high salt concentrations.
    Gostinčar C; Lenassi M; Gunde-Cimerman N; Plemenitaš A
    Adv Appl Microbiol; 2011; 77():71-96. PubMed ID: 22050822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants.
    Le Marrec C; Bon E; Lonvaud-Funel A
    Int J Food Microbiol; 2007 Apr; 115(3):335-42. PubMed ID: 17320992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.
    Sepcic K; Zalar P; Gunde-Cimerman N
    Mar Drugs; 2010 Dec; 9(1):43-58. PubMed ID: 21339946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes.
    Empadinhas N; da Costa MS
    Int Microbiol; 2008 Sep; 11(3):151-61. PubMed ID: 18843593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats.
    Lee CJD; McMullan PE; O'Kane CJ; Stevenson A; Santos IC; Roy C; Ghosh W; Mancinelli RL; Mormile MR; McMullan G; Banciu HL; Fares MA; Benison KC; Oren A; Dyall-Smith ML; Hallsworth JE
    FEMS Microbiol Rev; 2018 Sep; 42(5):672-693. PubMed ID: 29893835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological responses to high sugar concentrations differ from adaptation to high salt concentrations in the xerophilic fungi Wallemia spp.
    Kralj Kunčič M; Zajc J; Drobne D; Pipan Tkalec Z; Gunde-Cimerman N
    Fungal Biol; 2013; 117(7-8):466-78. PubMed ID: 23931114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of reduced water activity and reduced matric potential on the germination of xerophilic and non-xerophilic fungi.
    Huang Y; Begum M; Chapman B; Hocking AD
    Int J Food Microbiol; 2010 May; 140(1):1-5. PubMed ID: 20231042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of agar concentration on the matric potential of glycerol agar media and the germination and growth of xerophilic and non-xerophilic fungi.
    Huang Y; Chapman B; Wilson M; Hocking AD
    Int J Food Microbiol; 2009 Jul; 133(1-2):179-85. PubMed ID: 19520449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.