These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15307400)

  • 1. Limitations of pupil tracking in refractive surgery: systematic error in determination of corneal locations.
    Bueeler M; Mrochen M
    J Refract Surg; 2004; 20(4):371-8. PubMed ID: 15307400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclotorsional eye motion occurring between wavefront measurement and refractive surgery.
    Chernyak DA
    J Cataract Refract Surg; 2004 Mar; 30(3):633-8. PubMed ID: 15050260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the accuracy of an eye tracking system for laser refractive surgery.
    Taylor NM; Eikelboom RH; van Sarloos PP; Reid PG
    J Refract Surg; 2000; 16(5):S643-6. PubMed ID: 11019890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation.
    Bueeler M; Mrochen M; Seiler T
    J Cataract Refract Surg; 2003 Feb; 29(2):257-63. PubMed ID: 12648634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pupil size and the ablation zone in laser refractive surgery: considerations based on geometric optics.
    Freedman KA; Brown SM; Mathews SM; Young RS
    J Cataract Refract Surg; 2003 Oct; 29(10):1924-31. PubMed ID: 14604712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pupil size influences the eye-tracker signal during saccades.
    Nyström M; Hooge I; Andersson R
    Vision Res; 2016 Apr; 121():95-103. PubMed ID: 26940030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye movement during laser in situ keratomileusis.
    Schwiegerling J; Snyder RW
    J Cataract Refract Surg; 2000 Mar; 26(3):345-51. PubMed ID: 10713227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated effect of corneal asphericity increase (Q-factor) as a refractive therapy for presbyopia.
    Amigo A; Bonaque S; López-Gil N; Thibos L
    J Refract Surg; 2012 Jun; 28(6):413-8. PubMed ID: 22692523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center?
    Pande M; Hillman JS
    Ophthalmology; 1993 Aug; 100(8):1230-7. PubMed ID: 8341507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pupil is faster than the corneal reflection (CR): Are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements?
    Hooge I; Holmqvist K; Nyström M
    Vision Res; 2016 Nov; 128():6-18. PubMed ID: 27656785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order aberrations in eyes with irregular corneas after laser refractive surgery.
    McCormick GJ; Porter J; Cox IG; MacRae S
    Ophthalmology; 2005 Oct; 112(10):1699-709. PubMed ID: 16095700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical effect of changes in entrance pupil magnification on wavefront-guided laser refractive corneal surgery.
    Charman WN; Atchison DA
    J Refract Surg; 2005; 21(4):386-91. PubMed ID: 16128337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positions of the horizontal and vertical centre of rotation in eyes with different refractive errors.
    Ohlendorf A; Schaeffel F; Wahl S
    Ophthalmic Physiol Opt; 2022 Mar; 42(2):376-383. PubMed ID: 35049064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The subject-fixated coaxially sighted corneal light reflex: a clinical marker for centration of refractive treatments and devices.
    Chang DH; Waring GO
    Am J Ophthalmol; 2014 Nov; 158(5):863-74. PubMed ID: 25127696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From wavefront device to laser: an alignment method for complete registration of the ablation to the cornea.
    Chernyak DA
    J Refract Surg; 2005; 21(5):463-8. PubMed ID: 16209443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment in customized laser in situ keratomileusis.
    Kermani O
    J Refract Surg; 2004; 20(5 Suppl):S651-8. PubMed ID: 15521260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing.
    Moreno-Barriuso E; Lloves JM; Marcos S; Navarro R; Llorente L; Barbero S
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1396-403. PubMed ID: 11328757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems.
    Bueeler M; Mrochen M
    J Refract Surg; 2005; 21(1):28-36. PubMed ID: 15724682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic eye tracker for excimer laser photorefractive keratectomy.
    Gobbi PG; Carones F; Brancato R; Carena M; Fortini A; Scagliotti F; Morico A; Venturi E
    J Refract Surg; 1995; 11(3 Suppl):S337-42. PubMed ID: 7553119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surgeon offsets and dynamic eye movements in laser refractive surgery.
    Porter J; Yoon G; MacRae S; Pan G; Twietmeyer T; Cox IG; Williams DR
    J Cataract Refract Surg; 2005 Nov; 31(11):2058-66. PubMed ID: 16412916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.