BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15307779)

  • 41. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents.
    Brown L; Koerner T; Horton JH; Oleschuk RD
    Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements.
    Barrett R; Faucon M; Lopez J; Cristobal G; Destremaut F; Dodge A; Guillot P; Laval P; Masselon C; Salmon JB
    Lab Chip; 2006 Apr; 6(4):494-9. PubMed ID: 16572211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices.
    Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK
    Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immobilization of a hyperbranched polyester via grafting-to and electron beam irradiation.
    Reichelt S; Gohs U; Simon F; Fleischmann S; Eichhorn KJ; Voit B
    Langmuir; 2008 Sep; 24(17):9392-400. PubMed ID: 18646782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection.
    Nugen SR; Asiello PJ; Connelly JT; Baeumner AJ
    Biosens Bioelectron; 2009 Apr; 24(8):2428-33. PubMed ID: 19168346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Attachment of human primary osteoblast cells to modified polyethylene surfaces.
    Poulsson AH; Mitchell SA; Davidson MR; Johnstone AJ; Emmison N; Bradley RH
    Langmuir; 2009 Apr; 25(6):3718-27. PubMed ID: 19275183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives.
    Luo Y; Huang B; Wu H; Zare RN
    Anal Chem; 2006 Jul; 78(13):4588-92. PubMed ID: 16808469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resist-free patterning of surface architectures in polymer-based microanalytical devices.
    McCarley RL; Vaidya B; Wei S; Smith AF; Patel AB; Feng J; Murphy MC; Soper SA
    J Am Chem Soc; 2005 Jan; 127(3):842-3. PubMed ID: 15656615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective surface patterning with an electric discharge in the fabrication of microfluidic structures.
    Suni NM; Haapala M; Mäkinen A; Sainiemi L; Franssila S; Färm E; Puukilainen E; Ritala M; Kostiainen R
    Angew Chem Int Ed Engl; 2008; 47(39):7442-5. PubMed ID: 18756570
    [No Abstract]   [Full Text] [Related]  

  • 58. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings.
    Chen HY; Lahann J
    Anal Chem; 2005 Nov; 77(21):6909-14. PubMed ID: 16255589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization.
    Chen J; Lin Y; Chen G
    Electrophoresis; 2007 Aug; 28(16):2897-903. PubMed ID: 17702066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.