These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15308247)

  • 1. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzocyclobutene (BCB) based neural implants with microfluidic channel.
    Lee K; He J; Wang L
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4326-9. PubMed ID: 17271262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses.
    Schanze T; Hesse L; Lau C; Greve N; Haberer W; Kammer S; Doerge T; Rentzos A; Stieglitz T
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):983-92. PubMed ID: 17554818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
    George PM; Lyckman AW; LaVan DA; Hegde A; Leung Y; Avasare R; Testa C; Alexander PM; Langer R; Sur M
    Biomaterials; 2005 Jun; 26(17):3511-9. PubMed ID: 15621241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F; Nishimura N; Griscom L; Lepioufle B; Fujita H; Takamura Y; Tamiya E
    Biosens Bioelectron; 2006 Jan; 21(7):1093-100. PubMed ID: 15961304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures.
    Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG
    J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.
    Schuettler M; Stiess S; King BV; Suaning GJ
    J Neural Eng; 2005 Mar; 2(1):S121-8. PubMed ID: 15876647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel glass microprobe arrays for neural recording.
    Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W
    Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of isolated ventricular myocytes within an open architecture microarray.
    Klauke N; Smith GL; Cooper JM
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):531-8. PubMed ID: 15759583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.