These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15308498)

  • 1. Role of tubular secretion and carbonic anhydrase in vertebrate renal sulfate excretion.
    Pelis RM; Renfro JL
    Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R491-501. PubMed ID: 15308498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal sulfate secretion is carbonic anhydrase dependent in a marine teleost, Pleuronectes americanus.
    Renfro JL; Maren TH; Zeien C; Swenson ER
    Am J Physiol; 1999 Feb; 276(2):F288-94. PubMed ID: 9950960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of renal sulfate secretion by metabolic acidosis requires Na+/H+ exchange induction and carbonic anhydrase.
    Pelis RM; Edwards SL; Kunigelis SC; Claiborne JB; Renfro JL
    Am J Physiol Renal Physiol; 2005 Jul; 289(1):F208-16. PubMed ID: 15741604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortisol alters carbonic anhydrase-mediated renal sulfate secretion.
    Pelis RM; Goldmeyer JE; Crivello J; Renfro JL
    Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1430-8. PubMed ID: 12907415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microperfusion study of bicarbonate accumulation in the proximal tubule of the rat kidney.
    Bank N; Aynedjian HS
    J Clin Invest; 1967 Jan; 46(1):95-102. PubMed ID: 4959907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonic anhydrase independent bicarbonate reabsorption.
    Lang F; Neuman S; Oberleithner H; Greger R; Messner G
    Pflugers Arch; 1982 Nov; 395(2):121-5. PubMed ID: 6817295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of basolateral carbonic anhydrase in proximal tubular fluid and bicarbonate absorption.
    Tsuruoka S; Swenson ER; Petrovic S; Fujimura A; Schwartz GJ
    Am J Physiol Renal Physiol; 2001 Jan; 280(1):F146-54. PubMed ID: 11133524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intramolecular transport metabolon: fusion of carbonic anhydrase II to the COOH terminus of the Cl(-)/HCO(3)(-)exchanger, AE1.
    Sowah D; Casey JR
    Am J Physiol Cell Physiol; 2011 Aug; 301(2):C336-46. PubMed ID: 21543742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepithelial sulfate transport by avian renal proximal tubule epithelium in primary culture.
    Dudas PL; Renfro JL
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1354-61. PubMed ID: 12388445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internephron heterogeneity for carbonic anhydrase-independent bicarbonate reabsorption in the rat.
    Frommer JP; Laski ME; Wesson DE; Kurtzman NA
    J Clin Invest; 1984 Apr; 73(4):1034-45. PubMed ID: 6423664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and histochemical studies of bicarbonate handling by the alligator kidney.
    Ventura SC; Northrup TE; Schneider G; Cohen JJ; Garella S
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F239-45. PubMed ID: 2537023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptability of marine teleost renal inorganic sulfate excretion: evidence for glucocorticoid involvement.
    Renfro JL
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R511-6. PubMed ID: 2782454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of renal transporters involved in sulfate excretion in marine teleost fish.
    Kato A; Chang MH; Kurita Y; Nakada T; Ogoshi M; Nakazato T; Doi H; Hirose S; Romero MF
    Am J Physiol Regul Integr Comp Physiol; 2009 Dec; 297(6):R1647-59. PubMed ID: 19812358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid/base transport in a model of the proximal tubule brush border: impact of carbonic anhydrase.
    Krahn TA; Weinstein AM
    Am J Physiol; 1996 Feb; 270(2 Pt 2):F344-55. PubMed ID: 8779897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal proximal tubular acidification. Role of brush-border and cytoplasmic carbonic anhydrase.
    Karlmark B; Agerup B; Wistrand PJ
    Acta Physiol Scand; 1979 Jun; 106(2):145-50. PubMed ID: 41407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H+-dependent sulfate secretion in the marine teleost renal tubule.
    Renfro JL; Pritchard JB
    Am J Physiol; 1982 Aug; 243(2):F150-9. PubMed ID: 7114214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters.
    Morgan PE; Pastoreková S; Stuart-Tilley AK; Alper SL; Casey JR
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C738-48. PubMed ID: 17652430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion exchanger is present in both luminal and basolateral renal membranes.
    Talor Z; Gold RM; Yang WC; Arruda JA
    Eur J Biochem; 1987 May; 164(3):695-702. PubMed ID: 3569284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturable pharmacokinetics in the renal excretion of drugs.
    van Ginneken CA; Russel FG
    Clin Pharmacokinet; 1989 Jan; 16(1):38-54. PubMed ID: 2650954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal tubular secretion and effects of chlorothiazide, hydrochlorothiazide and clopamide: a study in the avian kidney.
    Odlind B; Lönnerholm G
    Acta Pharmacol Toxicol (Copenh); 1982 Sep; 51(3):187-97. PubMed ID: 6814186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.