BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15309342)

  • 1. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhamnolipid morphology and phenanthrene solubility at different pH values.
    Shin KH; Kim KW; Kim JY; Lee KE; Han SS
    J Environ Qual; 2008; 37(2):509-14. PubMed ID: 18268315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of phenanthrene in rhamnolipid production by P. putida in different media.
    Martínez-Toledo A; Ríos-Leal E; Vázquez-Duhalt R; González-Chávez Mdel C; Esparza-García JF; Rodríguez-Vázquez R
    Environ Technol; 2006 Feb; 27(2):137-42. PubMed ID: 16506509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process.
    Shin KH; Kim KW; Ahn Y
    J Hazard Mater; 2006 Oct; 137(3):1831-7. PubMed ID: 16787705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.
    Shin KH; Ahn Y; Kim KW
    Environ Toxicol Chem; 2005 Nov; 24(11):2768-74. PubMed ID: 16398112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media.
    Pantsyrnaya T; Blanchard F; Delaunay S; Goergen JL; Guédon E; Guseva E; Boudrant J
    Chemosphere; 2011 Mar; 83(1):29-33. PubMed ID: 21324508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.
    Gottfried A; Singhal N; Elliot R; Swift S
    Appl Microbiol Biotechnol; 2010 May; 86(5):1563-71. PubMed ID: 20146061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment.
    An CJ; Huang GH; Wei J; Yu H
    Water Res; 2011 Nov; 45(17):5501-10. PubMed ID: 21890166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions.
    Zhao B; Zhu L; Li W; Chen B
    Chemosphere; 2005 Jan; 58(1):33-40. PubMed ID: 15522330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037.
    Tecon R; van der Meer JR
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1131-9. PubMed ID: 19730847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.
    Li S; Pi Y; Bao M; Zhang C; Zhao D; Li Y; Sun P; Lu J
    Mar Pollut Bull; 2015 Dec; 101(1):219-225. PubMed ID: 26494247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems.
    Ahmad Z; Zhang X; Imran M; Zhong H; Andleeb S; Zulekha R; Liu G; Ahmad I; Coulon F
    Ecotoxicol Environ Saf; 2021 Jan; 207():111514. PubMed ID: 33254394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2009 May; 164(2-3):1045-50. PubMed ID: 18950937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene.
    Yang JG; Liu X; Long T; Yu G; Peng S; Zheng L
    J Environ Sci (China); 2003 Nov; 15(6):859-62. PubMed ID: 14758909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nonionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphthovorans.
    Li JL; Chen BH
    J Hazard Mater; 2009 Feb; 162(1):66-73. PubMed ID: 18554784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant.
    Song S; Zhu L; Zhou W
    Environ Pollut; 2008 Dec; 156(3):1368-70. PubMed ID: 18656292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects.
    Rodrigues AC; Wuertz S; Brito AG; Melo LF
    Biotechnol Bioeng; 2005 May; 90(3):281-9. PubMed ID: 15800860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.