These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 1530942)
1. On the location and function of tyrosine beta 331 in the catalytic site of Escherichia coli F1-ATPase. Weber J; Lee RS; Grell E; Wise JG; Senior AE J Biol Chem; 1992 Jan; 267(3):1712-8. PubMed ID: 1530942 [TBL] [Abstract][Full Text] [Related]
2. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371 [TBL] [Abstract][Full Text] [Related]
3. Tryptophan fluorescence provides a direct probe of nucleotide binding in the noncatalytic sites of Escherichia coli F1-ATPase. Weber J; Wilke-Mounts S; Grell E; Senior AE J Biol Chem; 1994 Apr; 269(15):11261-8. PubMed ID: 8157656 [TBL] [Abstract][Full Text] [Related]
4. Combined application of site-directed mutagenesis, 2-azido-ATP labeling, and lin-benzo-ATP binding to study the noncatalytic sites of Escherichia coli F1-ATPase. Weber J; Lee RS; Wilke-Mounts S; Grell E; Senior AE J Biol Chem; 1993 Mar; 268(9):6241-7. PubMed ID: 8454597 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the aurovertin binding site of Escherichia coli F1-ATPase by fluorescence spectroscopy and site-directed mutagenesis. Weber J; Lee RS; Grell E; Senior AE Biochemistry; 1992 Jun; 31(22):5112-6. PubMed ID: 1534996 [TBL] [Abstract][Full Text] [Related]
6. Subunits coupling H+ transport and ATP synthesis in the Escherichia coli ATP synthase. Cys-Cys cross-linking of F1 subunit epsilon to the polar loop of F0 subunit c. Zhang Y; Fillingame RH J Biol Chem; 1995 Oct; 270(41):24609-14. PubMed ID: 7592682 [TBL] [Abstract][Full Text] [Related]
7. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. Weber J; Bowman C; Senior AE J Biol Chem; 1996 Aug; 271(31):18711-8. PubMed ID: 8702526 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli. Omote H; Maeda M; Futai M J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377 [TBL] [Abstract][Full Text] [Related]
9. Catalytic and EPR studies of the beta E204Q mutant of the chloroplast F1-ATPase from Chlamydomonas reinhardtii. Hu CY; Houseman AL; Morgan L; Webber AN; Frasch WD Biochemistry; 1996 Sep; 35(37):12201-11. PubMed ID: 8810928 [TBL] [Abstract][Full Text] [Related]
11. Domains near ATP gamma phosphate in the catalytic site of H+-ATPase. Model proposed from mutagenesis and inhibitor studies. Iwamoto A; Park MY; Maeda M; Futai M J Biol Chem; 1993 Feb; 268(5):3156-60. PubMed ID: 8428992 [TBL] [Abstract][Full Text] [Related]
12. The defective proton-ATPase of uncD mutants of Escherichia coli. Two mutations which affect the catalytic mechanism. Duncan TM; Senior AE J Biol Chem; 1985 Apr; 260(8):4901-7. PubMed ID: 2859284 [TBL] [Abstract][Full Text] [Related]
13. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
14. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Nadanaciva S; Weber J; Senior AE Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of the conserved beta subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. Wise JG J Biol Chem; 1990 Jun; 265(18):10403-9. PubMed ID: 2141332 [TBL] [Abstract][Full Text] [Related]
16. Binding and hydrolysis of TNP-ATP by Escherichia coli F1-ATPase. Weber J; Senior AE J Biol Chem; 1996 Feb; 271(7):3474-7. PubMed ID: 8631950 [TBL] [Abstract][Full Text] [Related]
17. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. Weber J; Wilke-Mounts S; Senior AE J Biol Chem; 1994 Aug; 269(32):20462-7. PubMed ID: 8051144 [TBL] [Abstract][Full Text] [Related]
18. F1ATPase of Escherichia coli: a mutation (uncA401) located in the middle of the alpha subunit affects the conformation essential for F1 activity. Kanazawa H; Noumi T; Matsuoka I; Hirata T; Futai M Arch Biochem Biophys; 1984 Jan; 228(1):258-69. PubMed ID: 6230047 [TBL] [Abstract][Full Text] [Related]
19. ATP hydrolysis-driven structural changes in the gamma-subunit of Escherichia coli ATPase monitored by fluorescence from probes bound at introduced cysteine residues. Turina P; Capaldi RA J Biol Chem; 1994 May; 269(18):13465-71. PubMed ID: 8175779 [TBL] [Abstract][Full Text] [Related]
20. Aromatic rings of tyrosine residues at adenine nucleotide binding sites of the beta subunits of F1-ATPase are not necessary for ATPase activity. Odaka M; Kobayashi H; Muneyuki E; Yoshida M Biochem Biophys Res Commun; 1990 Apr; 168(1):372-8. PubMed ID: 2139333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]