BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15309563)

  • 21. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough.
    Kato S; Kobayashi C; Kakegawa T; Yamagishi A
    Environ Microbiol; 2009 Aug; 11(8):2094-111. PubMed ID: 19397679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge.
    Perner M; Bach W; Hentscher M; Koschinsky A; Garbe-Schönberg D; Streit WR; Strauss H
    Environ Microbiol; 2009 Oct; 11(10):2526-41. PubMed ID: 19558512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.
    Cerqueira T; Pinho D; Egas C; Froufe H; Altermark B; Candeias C; Santos RS; Bettencourt R
    Mar Genomics; 2015 Dec; 24 Pt 3():343-55. PubMed ID: 26375668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-sea smokers: windows to a subsurface biosphere?
    Deming JW; Baross JA
    Geochim Cosmochim Acta; 1993 Jul; 57(14):3219-30. PubMed ID: 11538298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.
    McCollom TM
    Astrobiology; 2007 Dec; 7(6):933-50. PubMed ID: 18163871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.
    Jiang L; Xu H; Zeng X; Wu X; Long M; Shao Z
    Res Microbiol; 2015 Nov; 166(9):677-87. PubMed ID: 26026841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars.
    Boston PJ; Ivanov MV; McKay CP
    Icarus; 1992; 95():300-8. PubMed ID: 11539823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.
    Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR
    Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.
    Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA
    Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).
    Wang Y; Li JT; He LS; Yang B; Gao ZM; Cao HL; Batang Z; Al-Suwailem A; Qian PY
    PLoS One; 2015; 10(10):e0140766. PubMed ID: 26485717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system.
    Inagaki F; Kuypers MM; Tsunogai U; Ishibashi J; Nakamura K; Treude T; Ohkubo S; Nakaseama M; Gena K; Chiba H; Hirayama H; Nunoura T; Takai K; Jørgensen BB; Horikoshi K; Boetius A
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14164-9. PubMed ID: 16959888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular ecology of hydrothermal vent microbial communities.
    Jeanthon C
    Antonie Van Leeuwenhoek; 2000 Feb; 77(2):117-33. PubMed ID: 10768471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Thermophilic microbial communities of deep-sea hydrothermal environments].
    Miroshnichenko ML
    Mikrobiologiia; 2004; 73(1):5-18. PubMed ID: 15074034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge.
    Schrenk MO; Kelley DS; Bolton SA; Baross JA
    Environ Microbiol; 2004 Oct; 6(10):1086-95. PubMed ID: 15344934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents.
    Campbell BJ; Cary SC
    Appl Environ Microbiol; 2004 Oct; 70(10):6282-9. PubMed ID: 15466576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.
    He T; Zhang X
    Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care?
    Nealson KH; Inagaki F; Takai K
    Trends Microbiol; 2005 Sep; 13(9):405-10. PubMed ID: 16054814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge.
    Jaeschke A; Jørgensen SL; Bernasconi SM; Pedersen RB; Thorseth IH; Früh-Green GL
    Geobiology; 2012 Nov; 10(6):548-61. PubMed ID: 23006788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and spatial archaeal colonization of hydrothermal vent deposits.
    Pagé A; Tivey MK; Stakes DS; Reysenbach AL
    Environ Microbiol; 2008 Apr; 10(4):874-84. PubMed ID: 18201197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial patterns of Aquificales in deep-sea vents along the Eastern Lau Spreading Center (SW Pacific).
    Ferrera I; Banta AB; Reysenbach AL
    Syst Appl Microbiol; 2014 Sep; 37(6):442-8. PubMed ID: 24862554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.