BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 1531010)

  • 1. Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes.
    Vincent MF; Bontemps F; Van den Berghe G
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):267-72. PubMed ID: 1531010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-type specificity of inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside. Lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells.
    Javaux F; Vincent MF; Wagner DR; van den Berghe G
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):913-9. PubMed ID: 7848293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes.
    Vincent MF; Marangos PJ; Gruber HE; Van den Berghe G
    Diabetes; 1991 Oct; 40(10):1259-66. PubMed ID: 1657665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoglycaemic effect of AICAriboside in mice.
    Vincent MF; Erion MD; Gruber HE; Van den Berghe G
    Diabetologia; 1996 Oct; 39(10):1148-55. PubMed ID: 8897001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate cycling between 5-amino-4-imidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes.
    Vincent MF; Bontemps F; Van den Berghe G
    Biochem Pharmacol; 1996 Oct; 52(7):999-1006. PubMed ID: 8831718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AICAriboside inhibits gluconeogenesis in isolated rat hepatocytes.
    Vincent MF; Marangos P; Gruber HE; Van den Berghe G
    Adv Exp Med Biol; 1991; 309B():359-62. PubMed ID: 1664185
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase.
    Henin N; Vincent MF; Gruber HE; Van den Berghe G
    FASEB J; 1995 Apr; 9(7):541-6. PubMed ID: 7737463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 5-amino-4-imidazolecarboxamide riboside on renal ammoniagenesis. Study with [15N]aspartate.
    Nissim I; Yudkoff M; Segal S
    J Biol Chem; 1986 May; 261(14):6509-14. PubMed ID: 2871025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved.
    López JM; Santidrián AF; Campàs C; Gil J
    Biochem J; 2003 Mar; 370(Pt 3):1027-32. PubMed ID: 12452797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of fructose 2,6-bisphosphate in the regulation of glycolysis and gluconeogenesis in chicken liver.
    Chaekal OK; Boaz JC; Sugano T; Harris RA
    Arch Biochem Biophys; 1983 Sep; 225(2):771-8. PubMed ID: 6312891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of glucose utilization by fructose in isolated rat hepatocytes.
    Fillat C; Gómez-Foix AM; Guinovart JJ
    Arch Biochem Biophys; 1993 Feb; 300(2):564-9. PubMed ID: 8382026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of (13)C-filtered (1)H NMR to evaluate drug action on gluconeogenesis and glycogenolysis simultaneously in isolated rat hepatocytes.
    Hansen SH; McCormack JG
    NMR Biomed; 2002 Aug; 15(5):313-9. PubMed ID: 12203222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction.
    Swain JL; Hines JJ; Sabina RL; Harbury OL; Holmes EW
    J Clin Invest; 1984 Oct; 74(4):1422-7. PubMed ID: 6480832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadate raises fructose 2,6-bisphosphate concentrations and activates glycolysis in rat hepatocytes.
    Gómez-Foix AM; Rodríguez-Gil JE; Fillat C; Guinovart JJ; Bosch F
    Biochem J; 1988 Oct; 255(2):507-12. PubMed ID: 2849417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation.
    Guigas B; Bertrand L; Taleux N; Foretz M; Wiernsperger N; Vertommen D; Andreelli F; Viollet B; Hue L
    Diabetes; 2006 Apr; 55(4):865-74. PubMed ID: 16567505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes.
    Probst I; Unthan-Fechner K
    Eur J Biochem; 1985 Dec; 153(2):347-53. PubMed ID: 3000776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart.
    Depré C; Veitch K; Hue L
    Acta Cardiol; 1993; 48(1):147-64. PubMed ID: 8447185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation by insulin of glycolysis in cultured hepatocytes is attenuated by extracellular ATP and puromycin through purine-dependent inhibition of phosphofructokinase 2 activation.
    Probst I; Quentmeier A; Schweickhardt C; Unthan-Fechner K
    Eur J Biochem; 1989 Jun; 182(2):387-93. PubMed ID: 2525468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration.
    Hue L; Sobrino F; Bosca L
    Biochem J; 1984 Dec; 224(3):779-86. PubMed ID: 6240979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells.
    Sabina RL; Patterson D; Holmes EW
    J Biol Chem; 1985 May; 260(10):6107-14. PubMed ID: 3997815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.