These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15310207)

  • 1. Nitric oxide reactivity of fluorophore coordinated carboxylate-bridged diiron(II) and dicobalt(II) complexes.
    Hilderbrand SA; Lippard SJ
    Inorg Chem; 2004 Aug; 43(17):5294-301. PubMed ID: 15310207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands.
    Carson EC; Lippard SJ
    J Inorg Biochem; 2006 May; 100(5-6):1109-17. PubMed ID: 16439023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the syn disposition of nitrogen donors at the active sites of carboxylate-bridged diiron enzymes. Enforcing dinuclearity and kinetic stability with a 1,2-diethynylbenzene-based ligand.
    Kuzelka J; Farrell JR; Lippard SJ
    Inorg Chem; 2003 Dec; 42(26):8652-62. PubMed ID: 14686842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes.
    Yoon S; Lippard SJ
    J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dirhodium tetracarboxylate scaffolds as reversible fluorescence-based nitric oxide sensors.
    Hilderbrand SA; Lim MH; Lippard SJ
    J Am Chem Soc; 2004 Apr; 126(15):4972-8. PubMed ID: 15080703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dioxygen-initiated oxidation of heteroatomic substrates incorporated into ancillary pyridine ligands of carboxylate-rich diiron(II) complexes.
    Carson EC; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):837-48. PubMed ID: 16411722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterically hindered carboxylate ligands support water-bridged dimetallic centers that model features of metallohydrolase active sites.
    Lee D; Hung PL; Spingler B; Lippard SJ
    Inorg Chem; 2002 Feb; 41(3):521-31. PubMed ID: 11825079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and dioxygen reactivity of tetracarboxylate-bridged Diiron(II) complexes with coordinated substrates.
    Yoon S; Lippard SJ
    Inorg Chem; 2003 Dec; 42(26):8606-8. PubMed ID: 14686832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water induces a structural conversion and accelerates the oxygenation of carboxylate-bridged non-heme diiron enzyme synthetic analogues.
    Zhao M; Song D; Lippard SJ
    Inorg Chem; 2006 Aug; 45(16):6323-30. PubMed ID: 16878942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and preliminary oxygenation studies of benzyl- and ethyl-substituted pyridine ligands of carboxylate-rich diiron(II) complexes.
    Carson EC; Lippard SJ
    Inorg Chem; 2006 Jan; 45(2):828-36. PubMed ID: 16411721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, structure and reactivity of novel pyridazine-coordinated diiron bridging carbene complexes.
    Xiao N; Xu Q; Sun J; Chen J
    Dalton Trans; 2005 Oct; (19):3250-8. PubMed ID: 16172652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands.
    Lee D; Lippard SJ
    Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic oxidative ring opening of THF promoted by a carboxylate-bridged diiron complex, triarylphosphines, and dioxygen.
    Moreira RF; Tshuva EY; Lippard SJ
    Inorg Chem; 2004 Jul; 43(14):4427-34. PubMed ID: 15236556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-induced fluorescence enhancement by displacement of dansylated ligands from cobalt.
    Lim MH; Kuang C; Lippard SJ
    Chembiochem; 2006 Oct; 7(10):1571-6. PubMed ID: 16789059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework.
    Do LH; Lippard SJ
    J Am Chem Soc; 2011 Jul; 133(27):10568-81. PubMed ID: 21682286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres.
    Harrop TC; Song D; Lippard SJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1730-8. PubMed ID: 17618690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes.
    Lim MH; Lippard SJ
    Inorg Chem; 2004 Oct; 43(20):6366-70. PubMed ID: 15446885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Characterization, and Oxygenation Studies of Carboxylate-Bridged Diiron(II) Complexes with Aromatic Substrates Tethered to Pyridine Ligands and the Formation of a Unique Trinuclear Complex.
    Friedle S; Lippard SJ
    Eur J Inorg Chem; 2009 Nov; 2009(36):5506-5515. PubMed ID: 20376288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.