These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15310454)

  • 21. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23.
    Li J; Yang Y; Peng Y; Austin RJ; van Eyndhoven WG; Nguyen KC; Gabriele T; McCurrach ME; Marks JR; Hoey T; Lowe SW; Powers S
    Nat Genet; 2002 Jun; 31(2):133-4. PubMed ID: 12021784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase.
    Shreeram S; Hee WK; Demidov ON; Kek C; Yamaguchi H; Fornace AJ; Anderson CW; Appella E; Bulavin DV
    J Exp Med; 2006 Dec; 203(13):2793-9. PubMed ID: 17158963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
    Lu X; Ma O; Nguyen TA; Jones SN; Oren M; Donehower LA
    Cancer Cell; 2007 Oct; 12(4):342-54. PubMed ID: 17936559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wip1-deficient neutrophils significantly promote intestinal ischemia/reperfusion injury in mice.
    Du J; Shen X; Zhao Y; Hu X; Sun B; Guan W; Li S; Zhao Y
    Curr Mol Med; 2015; 15(1):100-8. PubMed ID: 25601473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway.
    Bulavin DV; Phillips C; Nannenga B; Timofeev O; Donehower LA; Anderson CW; Appella E; Fornace AJ
    Nat Genet; 2004 Apr; 36(4):343-50. PubMed ID: 14991053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a substrate-based cyclic phosphopeptide inhibitor of protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Durell SR; Feng H; Bai Y; Anderson CW; Appella E
    Biochemistry; 2006 Nov; 45(44):13193-202. PubMed ID: 17073441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase.
    Fujimoto H; Onishi N; Kato N; Takekawa M; Xu XZ; Kosugi A; Kondo T; Imamura M; Oishi I; Yoda A; Minami Y
    Cell Death Differ; 2006 Jul; 13(7):1170-80. PubMed ID: 16311512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours.
    Rauta J; Alarmo EL; Kauraniemi P; Karhu R; Kuukasjärvi T; Kallioniemi A
    Breast Cancer Res Treat; 2006 Feb; 95(3):257-63. PubMed ID: 16254685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Role of p38alpha kinase in activation of premature senescence program in transformed mouse fibroblasts].
    Zubova SG; Bykova TV; Zubova IuG; Romanov VS; Aksenov ND; Pospelov VA; Pospelova TV
    Tsitologiia; 2007; 49(2):115-24. PubMed ID: 17432596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis.
    Tan M; Li P; Klos KS; Lu J; Lan KH; Nagata Y; Fang D; Jing T; Yu D
    Cancer Res; 2005 Mar; 65(5):1858-67. PubMed ID: 15753384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine.
    Demidov ON; Timofeev O; Lwin HN; Kek C; Appella E; Bulavin DV
    Cell Stem Cell; 2007 Aug; 1(2):180-90. PubMed ID: 18371349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wip1 abrogation decreases intestinal tumor frequency in APC(Min/+) mice irrespective of radiation quality.
    Suman S; Moon BH; Thakor H; Fornace AJ; Datta K
    Radiat Res; 2014 Sep; 182(3):345-9. PubMed ID: 25117622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction.
    Gilmartin AG; Faitg TH; Richter M; Groy A; Seefeld MA; Darcy MG; Peng X; Federowicz K; Yang J; Zhang SY; Minthorn E; Jaworski JP; Schaber M; Martens S; McNulty DE; Sinnamon RH; Zhang H; Kirkpatrick RB; Nevins N; Cui G; Pietrak B; Diaz E; Jones A; Brandt M; Schwartz B; Heerding DA; Kumar R
    Nat Chem Biol; 2014 Mar; 10(3):181-7. PubMed ID: 24390428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase.
    Oliva-Trastoy M; Berthonaud V; Chevalier A; Ducrot C; Marsolier-Kergoat MC; Mann C; Leteurtre F
    Oncogene; 2007 Mar; 26(10):1449-58. PubMed ID: 16936775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wip1: A candidate phosphatase for cancer diagnosis and treatment.
    Oghabi Bakhshaiesh T; Majidzadeh-A K; Esmaeili R
    DNA Repair (Amst); 2017 Jun; 54():63-66. PubMed ID: 28385459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway.
    Fernandez F; Soon I; Li Z; Kuan TC; Min DH; Wong ES; Demidov ON; Paterson MC; Dawe G; Bulavin DV; Xiao ZC
    Cell Adh Migr; 2012; 6(4):333-43. PubMed ID: 22983193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1.
    Yamaguchi H; Minopoli G; Demidov ON; Chatterjee DK; Anderson CW; Durell SR; Appella E
    Biochemistry; 2005 Apr; 44(14):5285-94. PubMed ID: 15807522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PP2Cdelta (Ppm1d, WIP1), an endogenous inhibitor of p38 MAPK, is regulated along with Trp53 and Cdkn2a following p38 MAPK inhibition during mouse preimplantation development.
    Hickson JA; Fong B; Watson PH; Watson AJ
    Mol Reprod Dev; 2007 Jul; 74(7):821-34. PubMed ID: 17219434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells.
    Xu W; Yuan X; Jung YJ; Yang Y; Basso A; Rosen N; Chung EJ; Trepel J; Neckers L
    Cancer Res; 2003 Nov; 63(22):7777-84. PubMed ID: 14633703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Implications of Sub-grouping HER2 Positive Tumors by Amplicon Structure and Co-amplified Genes.
    Maoz M; Devir M; Inbar M; Inbar-Daniel Z; Sherill-Rofe D; Bloch I; Meir K; Edelman D; Azzam S; Nechushtan H; Maimon O; Uziely B; Kadouri L; Sonnenblick A; Eden A; Peretz T; Zick A
    Sci Rep; 2019 Dec; 9(1):18795. PubMed ID: 31827209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.