These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 15310749)
1. The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. Wegele R; Tasler R; Zeng Y; Rivera M; Frankenberg-Dinkel N J Biol Chem; 2004 Oct; 279(44):45791-802. PubMed ID: 15310749 [TBL] [Abstract][Full Text] [Related]
2. Variable composition of heme oxygenases with different regiospecificities in Pseudomonas species. Gisk B; Wiethaus J; Aras M; Frankenberg-Dinkel N Arch Microbiol; 2012 Jul; 194(7):597-606. PubMed ID: 22318654 [TBL] [Abstract][Full Text] [Related]
3. Expression of the phytochrome operon in Pseudomonas aeruginosa is dependent on the alternative sigma factor RpoS. Barkovits K; Harms A; Benkartek C; Smart JL; Frankenberg-Dinkel N FEMS Microbiol Lett; 2008 Mar; 280(2):160-8. PubMed ID: 18248420 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329 [TBL] [Abstract][Full Text] [Related]
5. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. Ratliff M; Zhu W; Deshmukh R; Wilks A; Stojiljkovic I J Bacteriol; 2001 Nov; 183(21):6394-403. PubMed ID: 11591684 [TBL] [Abstract][Full Text] [Related]
7. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Wilks A; Ikeda-Saito M Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177 [TBL] [Abstract][Full Text] [Related]
8. The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. O'Neill MJ; Wilks A ACS Chem Biol; 2013 Aug; 8(8):1794-802. PubMed ID: 23947366 [TBL] [Abstract][Full Text] [Related]
9. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant. Wang J; Lad L; Poulos TL; Ortiz de Montellano PR J Biol Chem; 2005 Jan; 280(4):2797-806. PubMed ID: 15525643 [TBL] [Abstract][Full Text] [Related]
10. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Muramoto T; Tsurui N; Terry MJ; Yokota A; Kohchi T Plant Physiol; 2002 Dec; 130(4):1958-66. PubMed ID: 12481078 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa. Tasler R; Moises T; Frankenberg-Dinkel N FEBS J; 2005 Apr; 272(8):1927-36. PubMed ID: 15819886 [TBL] [Abstract][Full Text] [Related]
12. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa. Mouriño S; Giardina BJ; Reyes-Caballero H; Wilks A J Biol Chem; 2016 Sep; 291(39):20503-15. PubMed ID: 27493207 [TBL] [Abstract][Full Text] [Related]
13. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin. Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497 [TBL] [Abstract][Full Text] [Related]
14. Catalytic turnover dependent modification of the Pseudomonas aeruginosa heme oxygenase (pa-HO) by 5,6-O-isopropyledine-2-O-allyl-ascorbic acid. Bhakta MN; Olabisi A; Wimalasena K; Wilks A J Inorg Biochem; 2008 Feb; 102(2):251-9. PubMed ID: 17923157 [TBL] [Abstract][Full Text] [Related]
15. Heme oxidation in a chimeric protein of the alpha-selective Neisseriae meningitidis heme oxygenase with the distal helix of the delta-selective Pseudomonas aeruginosa. Deshmukh R; Zeng Y; Furci LM; Huang HW; Morgan BN; Sander S; Alontaga AY; Bunce RA; Moënne-Loccoz P; Rivera M; Wilks A Biochemistry; 2005 Oct; 44(42):13713-23. PubMed ID: 16229461 [TBL] [Abstract][Full Text] [Related]
16. Essential Amino Acid Residues Controlling the Unique Regioselectivity of Heme Oxygenase in Pseudomonas aeruginosa. Fujii H; Zhang X; Yoshida T J Am Chem Soc; 2004 Apr; 126(14):4466-7. PubMed ID: 15070334 [TBL] [Abstract][Full Text] [Related]
17. The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Pseudomonas aeruginosa. Rodríguez JC; Zeng Y; Wilks A; Rivera M J Am Chem Soc; 2007 Sep; 129(38):11730-42. PubMed ID: 17764179 [TBL] [Abstract][Full Text] [Related]
18. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato. Shah R; Schwach J; Frankenberg-Dinkel N; Gärtner W Photochem Photobiol Sci; 2012 Jun; 11(6):1026-31. PubMed ID: 22415794 [TBL] [Abstract][Full Text] [Related]
19. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions. Wang A; Zeng Y; Han H; Weeratunga S; Morgan BN; Moënne-Loccoz P; Schönbrunn E; Rivera M Biochemistry; 2007 Oct; 46(43):12198-211. PubMed ID: 17915950 [TBL] [Abstract][Full Text] [Related]
20. Shahzad S; Krug SA; Mouriño S; Huang W; Kane MA; Wilks A mBio; 2024 Mar; 15(3):e0276323. PubMed ID: 38319089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]