These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-resolution habitat suitability model for Phlebotomus pedifer, the vector of cutaneous leishmaniasis in southwestern Ethiopia. Pareyn M; Rutten A; Merdekios B; Wedegärtner REM; Girma N; Regelbrugge L; Shibru S; Leirs H Parasit Vectors; 2020 Sep; 13(1):467. PubMed ID: 32917242 [TBL] [Abstract][Full Text] [Related]
3. Remote Sensing and Geographic Information Systems and risk of American visceral leishmaniasis in Bahia, Brazil. Bavia ME; Carneiro DD; Gurgel Hda C; Madureira Filho C; Barbosa MG Parassitologia; 2005 Mar; 47(1):165-9. PubMed ID: 16044686 [TBL] [Abstract][Full Text] [Related]
4. [Production of transmission foci for cutaneous leishmaniasis: the case of Pau da Fome, Rio de Janeiro, Brazil]. Kawa H; Sabroza PC; Oliveira RM; Barcellos C Cad Saude Publica; 2010 Aug; 26(8):1495-507. PubMed ID: 21229209 [TBL] [Abstract][Full Text] [Related]
5. [Phlebotomine behavior in forest and extraforest environments, in an endemic area of American cutaneous leishmaniasis in northern Paraná State, southern Brazil]. Teodoro U; La Salvia Filho V; de Lima EM; Spinosa RP; Barbosa OC; Ferreira ME; Lonardoni MV Rev Saude Publica; 1993 Aug; 27(4):242-9. PubMed ID: 8209155 [TBL] [Abstract][Full Text] [Related]
6. Geographical Information Systems in Determination of Cutaneous Leishmaniasis Spatial Risk Level Based on Distribution of Vector Species in Imamoglu Province, Adana. Kavur H; Artun O J Med Entomol; 2017 Sep; 54(5):1175-1182. PubMed ID: 28505264 [TBL] [Abstract][Full Text] [Related]
7. Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran. Mollalo A; Sadeghian A; Israel GD; Rashidi P; Sofizadeh A; Glass GE Acta Trop; 2018 Dec; 188():187-194. PubMed ID: 30201488 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the spatial distribution of sandfly species and cutaneous leishmaniasis risk factors by using geographical information system technologies in Karaisali district of Adana province, Turkey. Artun O; Kavur H J Vector Borne Dis; 2017; 54(3):233-239. PubMed ID: 29097638 [TBL] [Abstract][Full Text] [Related]
9. Environmental risk modelling and potential sand fly vectors of cutaneous leishmaniasis in Chitral district: a leishmanial focal point of mount Tirich Mir, Pakistan. Zaidi F; Fatima SH; Jan T; Fatima M; Ali A; Khisroon M; Adnan M; Rasheed SB Trop Med Int Health; 2017 Sep; 22(9):1130-1140. PubMed ID: 28653450 [TBL] [Abstract][Full Text] [Related]
10. Predicting the Distribution of Phlebotomus papatasi (Diptera: Psychodidae), the Primary Vector of Zoonotic Cutaneous Leishmaniasis, in Golestan Province of Iran Using Ecological Niche Modeling: Comparison of MaxEnt and GARP Models. Sofizadeh A; Rassi Y; Vatandoost H; Hanafi-Bojd AA; Mollalo A; Rafizadeh S; Akhavan AA J Med Entomol; 2017 Mar; 54(2):312-320. PubMed ID: 28025245 [TBL] [Abstract][Full Text] [Related]
11. Entomological studies of phlebotomine sand flies (Diptera: Psychodidae) in relation to cutaneous leishmaniasis transmission in Al Rabta, North West of Libya. Dokhan MR; Kenawy MA; Doha SA; El-Hosary SS; Shaibi T; Annajar BB Acta Trop; 2016 Feb; 154():95-101. PubMed ID: 26589378 [TBL] [Abstract][Full Text] [Related]
12. An Integrated Approach Using Spatial Analysis to Study the Risk Factors for Leishmaniasis in Area of Recent Transmission. Menezes JA; Ferreira Ede C; Andrade-Filho JD; de Sousa AM; Morais MH; Rocha AM; Machado-Coelho GL; Lima FP; Madureira AP; Garcia TC; Freitas CR; Soares RP; Margonari C Biomed Res Int; 2015; 2015():621854. PubMed ID: 26229961 [TBL] [Abstract][Full Text] [Related]
13. Spatial relations among environmental factors and phlebotomine sand fly populations (Diptera: Psychodidae) in central and southern Morocco. Kahime K; Boussaa S; El Mzabi A; Boumezzough A J Vector Ecol; 2015 Dec; 40(2):342-54. PubMed ID: 26611970 [TBL] [Abstract][Full Text] [Related]
15. Environmental and socio-economic determinants associated with the occurrence of cutaneous leishmaniasis in the northeast of Colombia. Gutierrez JD; Martínez-Vega R; Ramoni-Perazzi J; Diaz-Quijano FA; Gutiérrez R; Ruiz FJ; Botello HA; Gil M; González J; Palencia M Trans R Soc Trop Med Hyg; 2017 Dec; 111(12):564-571. PubMed ID: 29509941 [TBL] [Abstract][Full Text] [Related]
16. Remote sensing, land cover changes, and vector-borne diseases: use of high spatial resolution satellite imagery to map the risk of occurrence of cutaneous leishmaniasis in Ghardaïa, Algeria. Garni R; Tran A; Guis H; Baldet T; Benallal K; Boubidi S; Harrat Z Infect Genet Evol; 2014 Dec; 28():725-34. PubMed ID: 25305006 [TBL] [Abstract][Full Text] [Related]
17. Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system. Bhunia GS; Kesari S; Jeyaram A; Kumar V; Das P Geospat Health; 2010 May; 4(2):155-65. PubMed ID: 20503185 [TBL] [Abstract][Full Text] [Related]
18. [Occurrence of American cutaneous leishmaniasis by remote sensing satellite imagery in an urban area of Southeastern Brazil]. Miranda C; Massa JL; Marques CC Rev Saude Publica; 1996 Oct; 30(5):433-7. PubMed ID: 9269092 [TBL] [Abstract][Full Text] [Related]
19. Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Rangel EF; Lainson R Mem Inst Oswaldo Cruz; 2009 Nov; 104(7):937-54. PubMed ID: 20027458 [TBL] [Abstract][Full Text] [Related]
20. Home sweet home: sand flies find a refuge in remote indigenous villages in north-eastern Brazil, where leishmaniasis is endemic. Sales KGDS; de Oliveira Miranda DE; Costa PL; da Silva FJ; Figueredo LA; Brandão-Filho SP; Dantas-Torres F Parasit Vectors; 2019 Mar; 12(1):118. PubMed ID: 30909958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]