BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15311922)

  • 1. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A.
    Agarwal PK; Geist A; Gorin A
    Biochemistry; 2004 Aug; 43(33):10605-18. PubMed ID: 15311922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies.
    Agarwal PK
    Proteins; 2004 Aug; 56(3):449-63. PubMed ID: 15229879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic dynamics of an enzyme underlies catalysis.
    Eisenmesser EZ; Millet O; Labeikovsky W; Korzhnev DM; Wolf-Watz M; Bosco DA; Skalicky JJ; Kay LE; Kern D
    Nature; 2005 Nov; 438(7064):117-21. PubMed ID: 16267559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics during catalysis.
    Eisenmesser EZ; Bosco DA; Akke M; Kern D
    Science; 2002 Feb; 295(5559):1520-3. PubMed ID: 11859194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is so special about Arg 55 in the catalysis of cyclophilin A? insights from hybrid QM/MM simulations.
    Li G; Cui Q
    J Am Chem Soc; 2003 Dec; 125(49):15028-38. PubMed ID: 14653737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the catalytic mechanism of cyclophilin A.
    Howard BR; Vajdos FF; Li S; Sundquist WI; Hill CP
    Nat Struct Biol; 2003 Jun; 10(6):475-81. PubMed ID: 12730686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of cyclophilin catalyzed peptidyl-prolyl isomerization by NMR spectroscopy.
    Videen JS; Stamnes MA; Hsu VL; Goodman M
    Biopolymers; 1994 Feb; 34(2):171-5. PubMed ID: 8142586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into the role of transition-state stabilization in cyclophilin A.
    Hamelberg D; McCammon JA
    J Am Chem Soc; 2009 Jan; 131(1):147-52. PubMed ID: 19128175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of barstar C40A/C82A/P27A and catalysis of the peptidyl-prolyl cis/trans isomerization by human cytosolic cyclophilin (Cyp18).
    Golbik R; Fischer G; Fersht AR
    Protein Sci; 1999 Jul; 8(7):1505-14. PubMed ID: 10422840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization.
    Zhao Y; Ke H
    Biochemistry; 1996 Jun; 35(23):7356-61. PubMed ID: 8652511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational perspective and evaluation of plausible catalytic mechanisms of peptidyl-prolyl cis-trans isomerases.
    Ladani ST; Souffrant MG; Barman A; Hamelberg D
    Biochim Biophys Acta; 2015 Oct; 1850(10):1994-2004. PubMed ID: 25585011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic catalysis of the peptidyl-prolyl bond rotation: are transition state formation and enzyme dynamics directly linked?
    Fanghänel J
    Angew Chem Int Ed Engl; 2003 Feb; 42(5):490-2. PubMed ID: 12569478
    [No Abstract]   [Full Text] [Related]  

  • 15. Theoretical and experimental investigation of the energetics of cis-trans proline isomerization in peptide models.
    Schroeder OE; Carper E; Wind JJ; Poutsma JL; Etzkorn FA; Poutsma JC
    J Phys Chem A; 2006 May; 110(20):6522-30. PubMed ID: 16706410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides].
    Fischer G; Bang H; Mech C
    Biomed Biochim Acta; 1984; 43(10):1101-11. PubMed ID: 6395866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of human WD40 repeat-containing peptidylprolyl isomerase (PPWD1).
    Davis TL; Walker JR; Ouyang H; MacKenzie F; Butler-Cole C; Newman EM; Eisenmesser EZ; Dhe-Paganon S
    FEBS J; 2008 May; 275(9):2283-95. PubMed ID: 18397323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclophilin and trigger factor from Bacillus subtilis catalyze in vitro protein folding and are necessary for viability under starvation conditions.
    Göthel SF; Scholz C; Schmid FX; Marahiel MA
    Biochemistry; 1998 Sep; 37(38):13392-9. PubMed ID: 9748346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of human phosphomannose isomerase: Insights from homology modeling and molecular dynamics simulation of enzyme bound substrate.
    Xiao J; Guo Z; Guo Y; Chu F; Sun P
    J Mol Graph Model; 2006 Nov; 25(3):289-95. PubMed ID: 16488169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropic and surprisingly small intramolecular polarization effects in the mechanism of cyclophilin A.
    Ladani ST; Hamelberg D
    J Phys Chem B; 2012 Sep; 116(35):10771-8. PubMed ID: 22891696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.