BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15311931)

  • 1. Short variable sequence acquired in evolution enables selective inhibition of various inward-rectifier K+ channels.
    Ramu Y; Klem AM; Lu Z
    Biochemistry; 2004 Aug; 43(33):10701-9. PubMed ID: 15311931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels.
    Jin W; Lu Z
    Biochemistry; 1999 Oct; 38(43):14286-93. PubMed ID: 10572003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel high-affinity inhibitor for inward-rectifier K+ channels.
    Jin W; Lu Z
    Biochemistry; 1998 Sep; 37(38):13291-9. PubMed ID: 9748337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Kir1.1 channels with the use of a radiolabeled derivative of tertiapin.
    Felix JP; Liu J; Schmalhofer WA; Bailey T; Bednarek MA; Kinkel S; Weinglass AB; Kohler M; Kaczorowski GJ; Priest BT; Garcia ML
    Biochemistry; 2006 Aug; 45(33):10129-39. PubMed ID: 16906771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of the honey bee toxin tertiapin binding to Kir3.2.
    Li D; Chen R; Chung SH
    Biophys Chem; 2016 Dec; 219():43-48. PubMed ID: 27716538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of
    Doupnik CA
    Toxins (Basel); 2019 Sep; 11(9):. PubMed ID: 31546848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels.
    Patel D; Kuyucak S; Doupnik CA
    Biochemistry; 2020 Feb; 59(7):836-850. PubMed ID: 31990535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titration of tertiapin-Q inhibition of ROMK1 channels by extracellular protons.
    Ramu Y; Klem AM; Lu Z
    Biochemistry; 2001 Mar; 40(12):3601-5. PubMed ID: 11297426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered specific and high-affinity inhibitor for a subtype of inward-rectifier K+ channels.
    Ramu Y; Xu Y; Lu Z
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10774-8. PubMed ID: 18669667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis.
    Mao J; Wu J; Chen F; Wang X; Jiang C
    J Biol Chem; 2003 Feb; 278(9):7091-8. PubMed ID: 12501240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of inward-rectifier K+ channel inhibition by tertiapin-Q.
    Jin W; Klem AM; Lewis JH; Lu Z
    Biochemistry; 1999 Oct; 38(43):14294-301. PubMed ID: 10572004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conduction and block of inward rectifier K+ channels: predicted structure of a potent blocker of Kir2.1.
    Hilder TA; Chung SH
    Biochemistry; 2013 Feb; 52(5):967-74. PubMed ID: 23320951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis.
    Mao J; Li L; McManus M; Wu J; Cui N; Jiang C
    J Biol Chem; 2002 Nov; 277(48):46166-71. PubMed ID: 12361957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. betaL-betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation.
    Finley M; Arrabit C; Fowler C; Suen KF; Slesinger PA
    J Physiol; 2004 Mar; 555(Pt 3):643-57. PubMed ID: 14724209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q.
    Yow TT; Pera E; Absalom N; Heblinski M; Johnston GA; Hanrahan JR; Chebib M
    Br J Pharmacol; 2011 Jul; 163(5):1017-33. PubMed ID: 21391982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes.
    Kobayashi T; Ikeda K; Kumanishi T
    Br J Pharmacol; 2000 Apr; 129(8):1716-22. PubMed ID: 10780978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.