These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15312048)

  • 1. Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules.
    Andrade J; Pearce ST; Zhao H; Barroso M
    Biochem J; 2004 Dec; 384(Pt 2):327-36. PubMed ID: 15312048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner.
    Timm S; Titus B; Bernd K; Barroso M
    Mol Biol Cell; 1999 Oct; 10(10):3473-88. PubMed ID: 10512881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The EF-hand Ca2+-binding protein p22 plays a role in microtubule and endoplasmic reticulum organization and dynamics with distinct Ca2+-binding requirements.
    Andrade J; Zhao H; Titus B; Timm Pearce S; Barroso M
    Mol Biol Cell; 2004 Feb; 15(2):481-96. PubMed ID: 14657246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules.
    Durrieu C; Bernier-Valentin F; Rousset B
    Mol Cell Biochem; 1987 Mar; 74(1):55-65. PubMed ID: 3587230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase.
    Cueille N; Blanc CT; Riederer IM; Riederer BM
    J Proteome Res; 2007 Jul; 6(7):2640-7. PubMed ID: 17521179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota /lambda and plays a role in microtubule dynamics in the early secretory pathway.
    Tisdale EJ
    J Biol Chem; 2002 Feb; 277(5):3334-41. PubMed ID: 11724794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of intracellular target proteins of the calcium-signaling protein S100A12.
    Hatakeyama T; Okada M; Shimamoto S; Kubota Y; Kobayashi R
    Eur J Biochem; 2004 Sep; 271(18):3765-75. PubMed ID: 15355353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect.
    Somers M; Engelborghs Y; Baert J
    Eur J Biochem; 1990 Oct; 193(2):437-44. PubMed ID: 2226464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure.
    Durrieu C; Bernier-Valentin F; Rousset B
    Arch Biochem Biophys; 1987 Jan; 252(1):32-40. PubMed ID: 3813539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion.
    Kaneda M; Takeuchi K; Inoue K; Umeda M
    J Biochem; 1997 Dec; 122(6):1233-40. PubMed ID: 9498570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway.
    Tisdale EJ
    J Biol Chem; 2001 Jan; 276(4):2480-6. PubMed ID: 11035021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein.
    Tisdale EJ; Azizi F; Artalejo CR
    J Biol Chem; 2009 Feb; 284(9):5876-84. PubMed ID: 19106097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of calcyclin and its cyanogen bromide fragments with annexin II and glyceraldehyde 3-phosphate dehydrogenase.
    Filipek A; Wojda U; Leśniak W
    Int J Biochem Cell Biol; 1995 Nov; 27(11):1123-31. PubMed ID: 7584597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the microtubule binding regions of calponin.
    Fattoum A; Roustan C; Smyczynski C; Der Terrossian E; Kassab R
    Biochemistry; 2003 Feb; 42(5):1274-82. PubMed ID: 12564930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The association of glycosomal enzymes and microtubules: a physiological phenomenon or an experimental artifact?
    Balaban N; Goldman R
    Exp Cell Res; 1990 Dec; 191(2):219-26. PubMed ID: 1979542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes.
    Ercolani L; Brown D; Stuart-Tilley A; Alper SL
    Am J Physiol; 1992 May; 262(5 Pt 2):F892-6. PubMed ID: 1590432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of estrogen and progesterone-BSA conjugates to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the effects of the free steroids on GAPDH enzyme activity: physiological implications.
    Joe I; Ramirez VD
    Steroids; 2001 Jun; 66(6):529-38. PubMed ID: 11182142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM; Hagedorn TD; Kennett KL
    Cytoskeleton (Hoboken); 2014 Dec; 71(12):707-18. PubMed ID: 25545749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.