BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15312700)

  • 1. The radiocaesium interception potential (RIP) at an agricultural site in Germany.
    Schimmack W; Auerswald K
    J Environ Radioact; 2004; 77(2):143-57. PubMed ID: 15312700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and bioavailability of (137)Cs in forest soil of southern Germany.
    Konopleva I; Klemt E; Konoplev A; Zibold G
    J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part I: activity-depth profiles of (134)Cs and (137)Cs.
    Schimmack W; Schultz W
    Sci Total Environ; 2006 Sep; 368(2-3):853-62. PubMed ID: 16674997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiocaesium fallout behaviour in volcanic soils in Iceland.
    Sigurgeirsson MA; Arnalds O; Palsson SE; Howard BJ; Gudnason K
    J Environ Radioact; 2005; 79(1):39-53. PubMed ID: 15571875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination.
    Vandebroek L; Van Hees M; Delvaux B; Spaargaren O; Thiry Y
    J Environ Radioact; 2012 Feb; 104():87-93. PubMed ID: 21963466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land.
    Schuller P; Walling DE; Sepúlveda A; Trumper RE; Rouanet JL; Pino I; Castillo A
    Appl Radiat Isot; 2004 May; 60(5):759-66. PubMed ID: 15082056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can 239 + 240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout?
    Schimmack W; Auerswald K; Bunzl K
    J Environ Radioact; 2001; 53(1):41-57. PubMed ID: 11378925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.
    Nouira A; Sayouty EH; Benmansour M
    J Environ Radioact; 2003; 68(1):11-26. PubMed ID: 12726696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil.
    Zhang X; Long Y; He X; Fu J; Zhang Y
    J Environ Radioact; 2008 Aug; 99(8):1242-6. PubMed ID: 18433951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.
    Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H
    Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium.
    Gil-García C; Rigol A; Vidal M
    J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: evaluation of the activity-depth profiles by transport models.
    Schimmack W; Feria Márquez F
    Sci Total Environ; 2006 Sep; 368(2-3):863-74. PubMed ID: 16643986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study.
    Fan Q; Yamaguchi N; Tanaka M; Tsukada H; Takahashi Y
    J Environ Radioact; 2014 Dec; 138():92-100. PubMed ID: 25201086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.
    Yoshimura K; Onda Y; Kato H
    J Environ Radioact; 2015 Jan; 139():362-369. PubMed ID: 25113169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of fertilizing on the (137)Cs soil-plant transfer in a spruce forest of Southern Germany.
    Zibold G; Klemt E; Konopleva I; Konoplev A
    J Environ Radioact; 2009 Jun; 100(6):489-96. PubMed ID: 19375834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-cultivar variability of the soil-to-grain transfer of fallout 137Cs and 90Sr for winter wheat.
    Schimmack W; Gerstmann U; Schultz W; Sommer M; Tschöpp V; Zimmermann G
    J Environ Radioact; 2007; 94(1):16-30. PubMed ID: 17276560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers.
    Schimmack W; Auerswald K; Bunzl K
    Naturwissenschaften; 2002 Jan; 89(1):43-6. PubMed ID: 12008973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
    Arapis GD; Karandinos MG
    J Environ Radioact; 2004; 77(2):133-42. PubMed ID: 15312699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.