BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

834 related articles for article (PubMed ID: 15312722)

  • 1. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J; Masumizu T
    Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of seawater on bisphenol A (BPA) degradation by Fenton reagents.
    Sajiki J; Yonekubo J
    Environ Int; 2004 Apr; 30(2):145-50. PubMed ID: 14749102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kładna A
    Luminescence; 2005; 20(2):81-9. PubMed ID: 15803505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing electron spin resonance detection of hydroxyl radical in water.
    Cheng SA; Fung WK; Chan KY; Shen PK
    Chemosphere; 2003 Sep; 52(10):1797-805. PubMed ID: 12871746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro.
    Shimmura S; Masumizu T; Nakai Y; Urayama K; Shimazaki J; Bissen-Miyajima H; Kohno M; Tsubota K
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1245-9. PubMed ID: 10235559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A.
    Huang W; Brigante M; Wu F; Mousty C; Hanna K; Mailhot G
    Environ Sci Technol; 2013 Feb; 47(4):1952-9. PubMed ID: 23343005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry.
    Jurva U; Wikström HV; Bruins AP
    Rapid Commun Mass Spectrom; 2002; 16(20):1934-40. PubMed ID: 12362384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation.
    Shi X; Flynn DC; Porter DW; Leonard SS; Vallyathan V; Castranova V
    Ann Clin Lab Sci; 1997; 27(5):365-74. PubMed ID: 9303176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances.
    Zhan M; Yang X; Xian Q; Kong L
    Chemosphere; 2006 Apr; 63(3):378-86. PubMed ID: 16289215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new insight into Fenton and Fenton-like processes for water treatment.
    Jiang C; Pang S; Ouyang F; Ma J; Jiang J
    J Hazard Mater; 2010 Feb; 174(1-3):813-7. PubMed ID: 19853996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced surface Fenton degradation of BPA in soil with a high pH.
    Yu Q; Feng L; Chai X; Qiu X; Ouyang H; Deng G
    Chemosphere; 2019 Apr; 220():335-343. PubMed ID: 30590299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin trapping by 5,5-dimethylpyrroline-N-oxide in Fenton media in the presence of Nafion perfluorinated membranes: limitations and potential.
    Bosnjakovic A; Schlick S
    J Phys Chem B; 2006 Jun; 110(22):10720-8. PubMed ID: 16771319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction.
    Poerschmann J; Trommler U; Górecki T
    Chemosphere; 2010 May; 79(10):975-86. PubMed ID: 20394961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the hydroxyl radical oxygen in the Fenton reaction.
    Lloyd RV; Hanna PM; Mason RP
    Free Radic Biol Med; 1997; 22(5):885-8. PubMed ID: 9119257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Fenton and sono-Fenton bisphenol A degradation.
    Ioan I; Wilson S; Lundanes E; Neculai A
    J Hazard Mater; 2007 Apr; 142(1-2):559-63. PubMed ID: 17011123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.