BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 15312735)

  • 1. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process.
    Chen Y; Li X; Shen Z
    Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds.
    Luo C; Shen Z; Lou L; Li X
    Environ Pollut; 2006 Dec; 144(3):862-71. PubMed ID: 16616805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass.
    Lai HY; Chen ZS
    Chemosphere; 2004 Apr; 55(3):421-30. PubMed ID: 14987941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents.
    Lou LQ; Ye ZH; Wong MH
    Int J Phytoremediation; 2007; 9(4):325-43. PubMed ID: 18246709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.
    Kim SH; Lee IS
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of weed species applied to remediation of soils contaminated with heavy metals.
    Wei SH; Zhou QX; Wang X; Cao W; Ren LP; Song YF
    J Environ Sci (China); 2004; 16(5):868-73. PubMed ID: 15559831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower.
    Usman AR; Mohamed HM
    Chemosphere; 2009 Aug; 76(7):893-9. PubMed ID: 19524998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize.
    Cui Y; Dong Y; Li H; Wang Q
    Environ Int; 2004 May; 30(3):323-8. PubMed ID: 14987861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.
    Tassi E; Pouget J; Petruzzelli G; Barbafieri M
    Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.
    Chaney RL; Angle JS; Broadhurst CL; Peters CA; Tappero RV; Sparks DL
    J Environ Qual; 2007; 36(5):1429-43. PubMed ID: 17766822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.