These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15312736)

  • 1. Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative.
    Chatain V; Hanna K; de Brauer C; Bayard R; Germain P
    Chemosphere; 2004 Oct; 57(3):197-206. PubMed ID: 15312736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process.
    Hanna K; de Brauer Ch; Germain P; Chovelon JM; Ferronato C
    Sci Total Environ; 2004 Oct; 332(1-3):51-60. PubMed ID: 15336890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils.
    Jiradecha C; Urgun-Demirtas M; Pagilla K
    J Hazard Mater; 2006 Aug; 136(1):61-7. PubMed ID: 16359784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility enhancement of seven metal contaminants using carboxymethyl-beta-cyclodextrin (CMCD).
    Skold ME; Thyne GD; Drexler JW; McCray JE
    J Contam Hydrol; 2009 Jul; 107(3-4):108-13. PubMed ID: 19487046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation.
    Hanna K; Chiron S; Oturan MA
    Water Res; 2005 Jul; 39(12):2763-73. PubMed ID: 15975622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils.
    Villaverde J
    J Hazard Mater; 2007 Apr; 142(1-2):184-90. PubMed ID: 16973265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclodextrin-enhanced solubilization of pentachlorophenol in water.
    Hanna K; de Brauer Ch; Germain P
    J Environ Manage; 2004 May; 71(1):1-8. PubMed ID: 15084354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization and desorption of methyl-parathion from porous media: a comparison of hydroxypropyl-beta-cyclodextrin and two nonionic surfactants.
    Zeng QR; Tang HX; Liao BH; Zhong T; Tang C
    Water Res; 2006 Apr; 40(7):1351-8. PubMed ID: 16540145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion complexes of alpha- and gamma-cyclodextrins and the herbicide norflurazon: I. Preparation and characterisation. II. Enhanced solubilisation and removal from soils.
    Villaverde J; Pérez-Martínez JI; Maqueda C; Ginés JM; Morillo E
    Chemosphere; 2005 Jul; 60(5):656-64. PubMed ID: 15963804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils.
    Anawar HM; Garcia-Sanchez A; Santa Regina I
    Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The environmental fate of arsenic in surface soil contaminated by historical herbicide application.
    Qi Y; Donahoe RJ
    Sci Total Environ; 2008 Nov; 405(1-3):246-54. PubMed ID: 18706676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil.
    Chatain V; Sanchez F; Bayard R; Moszkowicz P; Gourdon R
    J Hazard Mater; 2005 Jun; 122(1-2):119-28. PubMed ID: 15943934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.