These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 15312738)
1. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Walker DJ; Clemente R; Bernal MP Chemosphere; 2004 Oct; 57(3):215-24. PubMed ID: 15312738 [TBL] [Abstract][Full Text] [Related]
2. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Clemente R; Escolar A; Bernal MP Bioresour Technol; 2006 Oct; 97(15):1894-901. PubMed ID: 16223584 [TBL] [Abstract][Full Text] [Related]
3. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments. Clemente R; Walker DJ; Bernal MP Environ Pollut; 2005 Nov; 138(1):46-58. PubMed ID: 15894412 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Clemente R; Walker DJ; Roig A; Bernal MP Biodegradation; 2003 Jun; 14(3):199-205. PubMed ID: 12889610 [TBL] [Abstract][Full Text] [Related]
5. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Gupta AK; Sinha S Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314 [TBL] [Abstract][Full Text] [Related]
6. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Bose S; Bhattacharyya AK Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356 [TBL] [Abstract][Full Text] [Related]
7. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related]
8. Using Mediterranean shrubs for the phytoremediation of a soil impacted by pyritic wastes in Southern Spain: a field experiment. Moreno-Jiménez E; Vázquez S; Carpena-Ruiz RO; Esteban E; Peñalosa JM J Environ Manage; 2011 Jun; 92(6):1584-90. PubMed ID: 21353375 [TBL] [Abstract][Full Text] [Related]
9. Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain. Vázquez S; Hevia A; Moreno E; Esteban E; Peñalosa JM; Carpena RO J Environ Manage; 2011 Aug; 92(8):2069-75. PubMed ID: 21531070 [TBL] [Abstract][Full Text] [Related]
10. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934 [TBL] [Abstract][Full Text] [Related]
12. Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. de la Fuente C; Clemente R; Bernal MP Ecotoxicol Environ Saf; 2008 Jun; 70(2):207-15. PubMed ID: 17659778 [TBL] [Abstract][Full Text] [Related]
13. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility. Alburquerque JA; de la Fuente C; Bernal MP J Environ Manage; 2011 Mar; 92(3):733-41. PubMed ID: 21035939 [TBL] [Abstract][Full Text] [Related]
14. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Kidd PS; Monterroso C Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245 [TBL] [Abstract][Full Text] [Related]
15. Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. de la Fuente C; Clemente R; Martinez J; Pilar Bernal M Chemosphere; 2010 Oct; 81(5):603-10. PubMed ID: 20825965 [TBL] [Abstract][Full Text] [Related]
16. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Conesa HM; Faz A; Arnaldos R Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188 [TBL] [Abstract][Full Text] [Related]
17. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil. Evanylo GK; Abaye AO; Dundas C; Zipper CE; Lemus R; Sukkariyah B; Rockett J J Environ Qual; 2005; 34(5):1811-9. PubMed ID: 16151233 [TBL] [Abstract][Full Text] [Related]
18. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Arienzo M; Adamo P; Cozzolino V Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498 [TBL] [Abstract][Full Text] [Related]
19. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Gil MV; Carballo MT; Calvo LF Waste Manag; 2008; 28(8):1432-40. PubMed ID: 17624756 [TBL] [Abstract][Full Text] [Related]
20. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]